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Abstract—In this article, we investigate security and
privacy issues in networked supervisory control systems
over multiple channel networks. We consider a networked
discrete-event system controlled by a supervisor that re-
ceives information from sensors and sends control deci-
sions to actuators via observation channels and control
channels, respectively. The security problem is studied
for the scenario where some of the communication chan-
nels are insecure in the sense there exists a passive in-
truder (eavesdropper) that can access the information-flow
in those insecure communication channels. We adopt the
concept of opacity, an information flow security property, to
characterize the security status of the supervisory control
system. Specifically, we assume that the system has a se-
cret and the system is said to be opaque if the intruder can
never determine the secret of the system unambiguously
based on the information-flow in the insecure channels.
We consider the notions of current-state opacity, K-step
opacity, and infinite-step opacity in the networked control
setting. New network observers are proposed to estimate
the state of the system with two-side incomparable channel
information. We show that the opacity verification problems
for the networked setting can be effectively solved using
the proposed network observers.

Index Terms—Discrete event systems, networked control
systems, opacity, security.

I. INTRODUCTION

A. Motivation

SUPERVISORY control theory is a formal approach for
controller synthesis of discrete-event systems (DES) with

provable correctness guarantees. Since the seminal work of
Ramadge and Wonham in the late 1980s, the supervisory control
theory has been developed extensively and has been successfully
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applied to many engineering systems [5]. In the supervisory
control theory, the system/plant, which is modeled as a DES, is
controlled by a supervisor that disables/enables the occurrences
of events dynamically based on its observation such that the
closed-loop system under control meets some desired design
specification.

In essence, a supervisor is a decision-making module, which
receives information from sensors in the plant (modeled as
observable events) and sends control decisions to actuators in the
plant (modeled as controllable events). In many modern applica-
tions, the supervisor and the plant are connected via communica-
tion networks, where the supervisor receives sensor readings via
observation channels and sends commands via control channels.
Control systems with such networked information architectures
are referred to as networked control systems (NCSs). Compared
with the traditional control architectures, NCSs provide a more
flexible way for controlling a system; for example, we can
implement the controller in the cloud utilizing more powerful
computation resources. Due to the advantages of NCSs, supervi-
sory control of networked discrete-event systems has also drawn
considerable attention in the DES literature in the past few years;
see, e.g., [1], [11], [14], [16], [19], [21]–[23], and [35].

Although networked control systems have many advantages,
they also bring new research challenges. One of the major
challenges in NCSs is the information security/privacy issue. In
particular, communication channels in NCSs may be insecure in
the sense that the information transmission may be “listened” by
an intruder (eavesdropper) that is potentially malicious. In other
words, the networked architecture may cause an information
leak, which may further reveal some “secret” of the system.
Therefore, developing security analysis methodologies is be-
coming progressively more important for NCSs.

B. Related Works

Networked supervisory control systems have drawn many
attention recently in the DES literature; see, e.g., [1], [11], [14],
[18], [19], and [21]–[23]. However, most of them focus on how
to design a networked supervisor that can handle information
delays/losses in the control and observation channels [4], [23],
[24], [27], [34], [37]. For example, Lin [14] proposes the notion
of network controllability and network observability as neces-
sary and sufficient conditions for the existence of a networked
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Fig. 1. Networked supervisory control system with insecure multiple
channel networks. Sensors and actuators in the plant are modeled as
observable events Σo and controllable events Σc, respectively. Sets
Σo,a ⊆ Σo and Σc,a ⊆ Σc denote sensors and actuators whose com-
munication channels are insecure, respectively.

supervisor. To our knowledge, information-flow security issue
has not been investigated systematically for supervisory control
systems in the context of DES.

In [36], the supervisory control problem over insecure control
channels is considered. In particular, the authors consider a “con-
trol command eavesdropping actuator enablement attacker.”
This setting of insecure communication channel is very similar
to the setting considered in our work. However, [36] considers
the behavior-preserving problem of the controlled system, while
we investigate the information-security problem under insecure
channels, which are clearly different.

In the DES literature, the notion of opacity has also been
studied very extensively in the past few years; see, e.g., [2], [3],
[6], [8]–[10], [13], [20], [25], [26], [29], and [33]. However, most
of the existing works assume that the intruder observes a set of
events of the system; this essentially corresponds to our setting
of insecure observation channels. In [7] and [17], more general
observation models of the intruder are considered. However,
their models do not explicitly capture the information-flow in
networked supervisory control systems.

The study of opacity of networked DES has recently been
reported in [15] and [28]. Specifically, these works assume
that the observation of the intruder may be subject to delays
or losses, which is similar to Lin’s model proposed in [14] for
networked DES. However, our work considers the case that
the supervisor is implemented in a networked environment in
which the communication channels may be insecure. Instead of
investigating the effects of delays and losses, our work focuses
on investigating information leakage in the feedback channels,
which is clearly different from the network opacity problem
considered in [15] and [28].

C. Our Contributions

In this article, we propose a new framework for investigating
the security issue in networked supervisory control systems over
multiple channel networks. The information structure of the net-
worked supervisory control system investigated in this article is
depicted in Fig. 1. Specifically, we consider a plantGmodeled as
a discrete-event system. We assume that the supervisor receives
observable events from sensors via observation channels and

sends control decisions to actuators via control channels. We
consider the general scenario where information is transmit-
ted via multiple channel networks, i.e., different actuators and
sensors may transmit information using different channels. We
further assume that some of the observation/control channels are
insecure in the sense that there exists a passive intruder knowing
the information transmitted in those insecure channels.

To characterize the security status of the networked supervi-
sory control system, we adopt the concept of an information-flow
security property called opacity. Specifically, we assume that
the networked supervisory control system has a “secret” that
does not want to be revealed to the intruder. We say that the
system is opaque if the intruder can never determine that the
system is/was at a secret state unambiguously by “listening”
those insecure observation and control channels. In particular,
we consider three specific types of opacity, namely: 1) current-
state opacity; 2) K-step opacity; and 3) infinite-step opacity. In
current-state opacity, only the current-state-secret is considered
while in K-step and infinite-step opacity, one is also interested
in whether or not the visit of a secret state at some instant can
be revealed in the future. We then investigate the verification
problems of notions of opacity in the networked setting. In
particular, we show that the verification of current-state opacity
can be effectively solved by constructing a new information
structure called the network observer that estimates the state
of the system by correctly fusing the incomparable information
in the observation and control channels. Furthermore, we gen-
eralize the network observer to the two-way network observer
capturing the smoothed information to verify infinite-step and
K-step opacity.

Note that our recent work [30] formulates a similar opacity
problem in networked supervisory control systems but only for
the case of a single insecure control channel. In this article,
we consider a more general case of multiple channel networks,
where both control channels and observation channels can be
insecure. This general setting is fundamentally more difficult
than the one-side and single-channel case studied in [30]. In
particular, in the single-channel setting, the information leakage
in the observation channel is strictly more than that in the control
channel. However, in our multiple channel setting, information
in control channels and information in observation channels are
incomparable. Hence, a new state estimation technique is needed
to handle this general case.

D. Organization

The rest of this article is organized as follows. In Section II,
we introduce some necessary preliminaries. Then, we propose
the framework of information-flow opacity in multiple channel
networks in Section III. In Section IV, we discuss how to verify
current-state opacity. Then, we further extend our framework to
the infinite-step and K-step opacity in Section V. Finally, Sec-
tion VI concludes this article. Preliminary and partial versions
of some of the results in this article are presented in [31] without
proofs. Compared with [31], this article contains i) detailed
literature review, explanations, and examples; ii) all technique
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proofs; and iii) the simplification of network observer and new
results for infinite-step and K-step opacity.

II. PRELIMINARY

A. System Model

Let Σ be a finite set of events. We call a finite sequence of
events a string and we denote by Σ∗ the set of all strings over
Σ including the empty string ε. We define Σε = Σ ∪ {ε}. For
any string s ∈ Σ∗, we denote by |s| its length, i.e., the number
of event occurrences in it, with |ε| = 0. A language is a set of
strings. For any language L ⊆ Σ∗, we denote by L its prefix-
closure, i.e., L = {t ∈ Σ∗ : ∃w ∈ Σ∗ s.t. tw ∈ L}.

We consider a DES modeled as a deterministic finite-state
automaton (DFA)

G = (X,Σ, δ, x0)

where X is the finite set of state, Σ is the finite set of events,
δ : X × Σ→ X is the partial deterministic transition function,
and x0 ∈ X is the initial state. For any x, x′ ∈ X and σ ∈ Σ,
δ(x, σ) = x′ means that there exists a transition from x to x′

with event label σ. We define EG(x) as the set of events defined
at state x ∈ X , i.e., EG(x) = {σ ∈ Σ : δ(x, σ)!}, where “!”
means “is defined”. The transition function is also extended to
δ : X × Σ∗ → X recursively in the usual manner; see, e.g., [5].
For the sake of simplicity, we write δ(x, s) as δ(s)when x = x0.
The language generated by G is L(G) = {s ∈ Σ∗ : δ(s)!}. Fur-
thermore, the language generated by G from state x ∈ X is
defined by L(G, x) = {s ∈ Σ∗ : δ(x, s)!}.

Let Σ̂ ⊆ Σ be a set of events. The natural projection from Σ
to Σ̂ is a mapping PΣ̂ : Σ∗ → Σ̂∗ defined recursively by: for any
s ∈ Σ∗, σ ∈ Σ, we have

PΣ̂(ε) = ε and PΣ̂(sσ) =

{
PΣ̂(s)σ if σ ∈ Σ̂

PΣ̂(s) if σ /∈ Σ̂
. (1)

The natural projection is also extended to PΣ̂ : 2Σ
∗ → 2Σ̂

∗
as

follows: for any

L ⊆ Σ∗, PΣ̂(L) = {PΣ̂(s) ∈ Σ̂∗ : s ∈ L}.

B. Supervisory Control Systems

In the supervisory control framework, system G is controlled
by a supervisor that restricts the behavior of the system dynami-
cally such that some desired closed-loop requirement is fulfilled.
We assume that the event set is partitioned as

Σ = Σc∪̇Σuc = Σo∪̇Σuo

where Σc,Σuc,Σo, and Σuo are the sets of controllable events,
uncontrollable events, observable events, and unobservable
events, respectively, and “∪̇” denotes the disjoint union. In
general, there is no relationship between Σc and Σo.

A supervisor is a mechanism that disables/enables control-
lable events dynamically based on its observation. That is, a
supervisor cannot disable the occurrence of an uncontrollable
event or observe the occurrence of an unobservable event. More

formally, a supervisor can be modeled as a new DFA

S = (Z,Σ, ξ, z0)

such that the following two conditions hold:
1) (∀z ∈ Z)[Σuc ⊆ ES(z)];
2) (∀z, z′ ∈ Z, σ ∈ Σ : ξ(z, σ) = z′)[z 
= z′ ⇒ σ ∈ Σo].

Intuitively, supervisor S works as follows. When string s ∈
L(G) is generated by the system (if allowed), the supervisor
reaches state z = ξ(s) ∈ Z. Then, it decides to enable events
ES(z) currently. We refer to ES(ξ(s)) as the control decision
upon the occurrence of s. For the sake of simplicity, hereafter,
we also define S(s) := ES(ξ(s)). Therefore, the first condition
essentially requires that uncontrollable events should always be
enabled by the supervisor. Also, we note that the supervisor
can only update its control decision upon the occurrence of an
observable event; this is captured by the second condition. By
the second condition, we know that S(s) = S(PΣo

(s)) for any
s ∈ Σ∗.

The closed-loop system under control is

G× S = (X × Z,Σ, η, (x0, z0))

where for each (x, z) ∈ X × Z and each σ ∈ Σ, we have

η((x, z), σ) =

{
(x,′ z′) if δ(x, σ) = x′ ∧ ξ(z, σ) = z′

undefined otherwise.

III. MODELING OF NETWORK INFORMATION FLOW

AND ITS OPACITY

The supervisory control framework described in the previous
section provides a mathematical model of how a supervisor
works. Note that, from the implementation point of view, each
controllable event essentially represents a corresponding actua-
tor that controls the plant physically and each observable event
represents a corresponding sensor that reads the occurrence of
event. Therefore, in essence, the supervisor is a decision-making
module and it needs to interact with the system physically
via sensors and actuators in the plant in order to control the
system. As depicted in Fig. 1, when implementing a supervisor
in the networked environment, each sensor needs to send its
reading (occurrence of observable event) to the supervisor via
its corresponding observation channel and the supervisor needs
to send the enable/disable decision for each controllable event
to the corresponding actuator via its control channel.

In the networked environment, however, the communication
channels may not always be secure and some information trans-
mitted between the supervisor and the plant may be “listened” by
an intruder that is potentially malicious. The question naturally
arises, therefore, whether or not the system is still secure in
the presence of such insecure communication networks. In this
article, we propose a framework to analyze security of networked
supervisory control systems using the concept of opacity.

To formulate the information security problem, first, we con-
sider the information-flow in observation channels from sensors
to supervisor. When the system generates an observable event,
its occurrence can be detected by the associated sensor, which
then sends this information to the supervisor via its observation
channel. To model insecure observation channels, we assume

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 10,2022 at 03:52:57 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: OPACITY OF NETWORKED SUPERVISORY CONTROL SYSTEMS OVER INSECURE COMMUNICATION CHANNELS 887

that observable events Σo are further partitioned as

Σo = Σo,r∪̇Σo,a

whereΣo,r denotes the set of events whose observation channels
are secure (“r” stands for “reliable”) and Σo,a denotes the set
of events whose observation channels are insecure (“a” stands
for “attackable”). Therefore, the intruder can only observe event
transmission in Σo,a.

Note that, at each instant, there is only one sensor sending
information to the supervisor since the system cannot generate
two events simultaneously. However, the information-flow in
control channels is more involved. However, upon the observa-
tion of PΣo

(s), the control decision made by the supervisor is
S(PΣo

(s)). As we discussed above, in multichannel networks,
this control decision is not sent to the plant directly as a “pack-
age.” Instead, the supervisor needs to send disable/enable com-
mand to each actuator that corresponds to each controllable event
individually. In this regard, although mathematically equivalent,
it is more meaningful to interpret the supervisor as a mapping

S : PΣo
(L(G))× Σc → {Disable, Enable}. (2)

This interpretation is usually adopted in the decentralized control
problem to distinguish the fusion capability of each controllable
event; see, e.g., [12], [32]. To model insecure control channels,
similar to the case of observation channel, we also assume that
controllable event set Σc is further partitioned as

Σc = Σc,r∪̇Σc,a

where Σc,r denotes the set of controllable events whose control
channels are secure and Σc,a denotes the set of controllable
events whose control channels are insecure. Unlike the case of
observation channels, where only one sensor will send informa-
tion to the supervisor at each instant, the supervisor needs to send
control decisions to all actuators simultaneously. Therefore,
when the supervisor sends control decision γ ∈ 2Σc to each
actuator, the intruder can only obtain information [γ]Σc,a

:=
γ ∩ Σc,a, which is a projected control decision. We denote by
Γa := 2Σc,a the set of all projected control decisions. Note that
[γ]Σc,a

= ∅ does not imply that the intruder observes nothing
in control channels; it means that the intruder knows that the
supervisor is disabling all events in Σc,a as it will observe
“disable” in each channel of Σc,a.

Let s ∈ L(G× S) be a string generated by the closed-
loop system and suppose PΣo

(s) = σ1σ2 · · ·σn. Then, the
information-flow released in the communication channels from
the intruder’s point of view is the following sequence:

IS(s) = PΣo,a
(σ1)[S(σ1)]Σc,a

PΣo,a
(σ2)[S(σ1σ2)]Σc,a

· · ·PΣo,a
(σn)[S(σ1σ2 · · ·σn)]Σc,a

∈ (Σε
o,aΓa)

∗.
(3)

We denote by

IS = {IS(s) ∈ (Σε
o,aΓa)

∗ : s ∈ L(G× S)}
the set of all information-flows available to the intruder.

To summarize, we consider an information security problem
of a networked supervisory control system in the presence of an
intruder having the following capabilities.

1) The intruder knows both the system model and the func-
tionality of the supervisor.

2) The observation channels and the control channels are
only partially secure in the sense that the intruder knows
information-flow IS(s) when string s is executed.

Remark 1: Hereafter, we assume, without loss of generality,
that Σc,a 
= ∅. Otherwise, the intruder will only observe the
projected behavior of the system with respect to event set Σo,a,
which boils down to the standard opacity analysis problem.
Therefore, under this assumption, the intruder always has an ob-
servation in control channels when the supervisor sends a control
decision. However, it may not be able to distinguish two control
decisions γ1, γ2 ∈ 2Σ such that [S(γ1)]Σc,a

= [S(γ2)]Σc,a
.

Remark 2: The reason why the information-flow defined in
(3) starts from an observable event and ends up with a control
decision is as follows. We do not consider the initial control de-
cisionS(ε) in the information flow since any string generated by
the closed-loop system will start with the same control decision.
In other words, the initial control decision does not carry any
information about the state of the system when the functionality
of the supervisor is publicly known. Also, we assume implicitly
that the supervisor will send a control decision immediately after
it receives a new observable event. This is why the information
flow ends up with a control decision rather than an observable
event.

To characterize the security status of the supervisory control
system, we adopt the concept of opacity, which is widely used in
the information-flow security analysis. Specifically, we assume
that the system has a “secret,” which is modeled as a set of
secret statesXS ⊂ X . We say that the overall networked control
system is current-state opaque if the intruder can never know
for sure that the system is currently at a secret state based on
the information released in the communication channels. This
is formalized by the following definition.

Definition 1: Supervisory control system G×S is said to
be current-state opaque with respect to insecure observation
channels Σo,a, insecure control channels Σc,a, and secret states
XS if

(∀s ∈ L(G× S) : δ(s) ∈ XS)

(∃t ∈ L(G× S) : δ(t) /∈ XS)[IS(s) = IS(t)]. (4)

We illustrate the proposed framework and the notion of opac-
ity by the following example.

Example 1: Let us consider system G shown in Fig. 2 (a)
with Σc = {c1, c2} and Σo = Σ. We further assume that Σc,a =
{c1} and Σo,a = {c1, c2}, i.e., the intruder can only observe the
occurrence of events c1 and c2 and knows the control decision
for c1. Suppose that the system is controlled by supervisor S
shown in Fig. 2(b) and the closed-loop system G× S is then
shown in Fig. 2(c). The control objective is simply to avoid the
occurrence of dashed transitions in Fig. 2(a). We assume that
XS = {1}, i.e., we do not want the intruder knows for sure that
the system is at secret state 1.
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Fig. 2. Supervisory control system (G,S). (a) G. (b) S. (c) G× S.

Let us consider the occurrence of string u1c1u1 ∈ L(G×
S) that leads to secret state 1. Since supervisor S can ob-
serve all events, it will issue a control decision sequence
S(u1)S(u1c1)S(u1c1u1) = {c1, c2}{c1}{c1, c2}. Then, from
the intruder’s point of view, the information-flow is

IS(u1c1u1) = PΣo,a
(u1)[{c1, c2}]Σc,a

PΣo,a
(c1)[{c1}]Σc,a

PΣo,a
(u1)[{c1, c2}]Σc,a

= {c1}c1{c1}{c1}.
However, for string u2c1u2 ∈ L(G× S), which leads to non-
secret state 2, we also have

IS(u2c2u2) = PΣo,a
(u2)[{c1}]Σc,a

PΣo,a
(c1)[{c1}]Σc,a

PΣo,a
(u2)[{c1}]Σc,a

= {c1}c1{c1}{c1}.
That is, the occurrence of secret string u2c1u2 does not violate
current-state opacity. Note that, although S(u1) requires to
enable both c1 and c2 while S(u2) only requires to enable c1,
these two control decisions are identical for the intruder since
the control channel for c2 is assumed to be secure. However,
if Σc,a = {c1, c2}, we know that G× S is not current-state
opaque, since the intruder knows for sure that the system is
at secret state 1 when {c1, c2}c1{c1}{c1, c2} is observed.

IV. VERIFICATION OF CURRENT-STATE OPACITY USING

NETWORK OBSERVER

In this section, we discuss how to formally verify current-state
opacity for networked supervisory control systems with insecure
communication channels.

A. Network Observer

We first define the state estimate from the intruder’s point of
view. Let s ∈ L(G× S) be a string generated by the closed-loop
system. Then, the current-state-estimate of the intruder is defined

by

X̂(s) = {x∈X : ∃t∈L(G× S) s.t. IS(t)=IS(s) ∧ δ(t)=x}.
According to Definition 1, clearly, the system is current-state
opaque if and only if for any s ∈ L(G× S), we have X̂(s) 
⊆
XS . Therefore, how to compute all possible current-state-
estimates becomes the key of verifying current-state opacity.

In the event-based observation setting, such current-state-
estimate can be computed by constructing the observer au-
tomaton; see, e.g., [5]. However, our setting faces the follow-
ing main challenge: the information in control channels and
the information in observation channels are incomparable in
the sense that knowing the information on one side cannot
recover the information on the other side (even if the system
model and the functionality of the supervisor are known). For
example, when the intruder observes a new event σ ∈ Σo,a, it
cannot perfectly assert the control decision that will be issued
by the supervisor, since it cannot perfectly track the state of
the supervisor due to those secure observable events Σo,r. On
the other hand, when the intruder observes a projected control
decision γ ∈ Γa, it also cannot infer what event is received by
the supervisor from observation channels, since i) the control
information is projected; and ii) the supervisor may issue the
same control decision upon the occurrences of different events.
Therefore, we need an information fusion mechanism for this
incomparable information in control channels and observation
channels.

To estimate the state of the system, we need to consider the
following two situations of the intruder’s observation at each
instant.

1) The intruder first observes a new observable event in
observation channels and then (immediately) observes a
(projected) control decision in control channels; or

2) The intruder just observes a (projected) control decision
in control channels directly without seeing anything in
observation channels.

For the first case, the intruder will know that the last observ-
able event must be in set Σo,a and the projected control decision
observed can further help the intruder to eliminate uncertainty of
the system. The second case is more complicated and three levels
of inference are involved. First, the intruder needs to infer all
feasible control decisions based on the projected control decision
obtained. Then, for each possible control decision, it needs to
further infer all possible observations that make the supervisor to
issue such a decision. Finally, it will use the inferred observation
to further infer the actual strings generated by the system to
update the state estimate.

To this end, we define a new structure called the network
observer that utilizes the above discussed information. Let G be
a system and S be a supervisor. Then, the network observer is
defined as a new DFA

Obs(G,S) = (Q,Σobs, f, q0) (5)

where
1) Q ⊆ (2X×Z \ ∅)× {O,C} is the set of states, where O

and C are two symbols standing for “observation” and
“control,” respectively. We denote by QO the set of states
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whose second components are O and by QC the set of
states whose second components are C.

2) Σobs = Σo,a ∪ Γa is the set of events, which is the set of
possible observations of the intruder.

3) f : Q× Σobs → Q is the transition function defined as
follows:
a) for any (q1, C) ∈ QC , (q2, O) ∈ QO and σ ∈ Σo,a,

f((q1, C), σ) = (q2, O) if

q2=

{
(x,′ z′)∈X × Z :

∃(x, z) ∈ q1 s.t.
(x′, z′) = η((x, z), σ)

}
(6)

b) for any (q1, O) ∈ QO, (q2, C) ∈ QC and γ ∈ Γa,
f((q1, O), γ) = (q2, C) if

q2=

⎧⎨
⎩(x′, z′)∈X × Z :

∃(x, z)∈q1, w ∈ Σ∗uo s.t.
[ES(z)]Σc,a

= γ and
(x′, z′)=η((x, z), w)

⎫⎬
⎭
(7)

c) for any (q1, C) ∈ QC , (q2, C) ∈ QC and γ ∈ Γa,
f((q1, C), γ) = (q2, C) if

q2=

⎧⎨
⎩(x′, z′)∈X×Z :

∃(x, z)∈q1, σ∈Σo,r, w∈Σ∗uo
s.t. (x′, z′)=η((x, z), σw)

and [ES(z
′)]Σc,a

= γ

⎫⎬
⎭

(8)
d) q0 = ({(x, z) ∈ X × Z : ∃w ∈ Σ∗uo s.t. (x, z) =

η((x0, z0), w)}, C) is the initial state.
Note that, we will only consider reachable states in

Obs(G,S).
Intuitively, a C-state represents the intruder’s knowledge

of the system immediately after observing a control decision
in control channels and an O-state represents the intruder’s
knowledge of the system immediately after observing an event
in observation channels. For the sake of clarity, we write the
transition function f as fCO if it is from a C-state to an O-state;
the same for fOC and fCC . More specifically, the intuition of
each transition function is as follows:

1) Function fCO, as defined in Equation (6), simply updates
each system state and each supervisor state in the state
estimate based on the new observable event σ ∈ Σo,a. We
do not consider any unobservable tail of this observable
event in fCO as the supervisor will respond to this event
immediately before the occurrence of a new event.

2) Function fOC , as defined in (7), has the following two
roles: i) it first eliminates states in the state estimate whose
projected control decisions are not consistent with the
observation in control channels; and ii) then it adds all
states that can be reached unobservably in the closed-loop
system from states remained in the state estimate.

3) Function fCC , as defined in (14), captures the case that
the intruder observes two projected control decisions con-
secutively in control channels without seeing an event in
observation channels in between. For this case, we know
that the supervisor must have received a secure observable
event σ ∈ Σo,r, which is silent for the intruder, and upon
the occurrence of which the supervisor makes a control
decision with projection γ ∈ Γa.

Fig. 3. Network observer Obs(G,S). Rectangular states and oval
states denote C-states and O-states, respectively.

Note that, however, there is no transition function fOO as
the intruder cannot observe two events in observation channels
consecutively without seeing a control decision in between.

Before we formally show the properties of the network ob-
server, we first illustrate by the following example.

Example 2: Let us still consider system G and supervisor
S shown in Fig. 2(a) and (b), respectively. Its network observer
Obs(G,S) is shown in Fig. 3. For the sake of simplicity, symbols
C and O are omitted for each state and we use rectangular states
and oval states to denote C-states and O-states, respectively.
Initially, the state starts from C-state {(0, A)}. Note that all ob-
servable events that can occur from this state are secure, i.e., the
intruder cannot see their occurrences. Therefore, only function
fCC is defined at this C-state. If the intruder observes {c1}, i.e.,
c1 is enabled, then it moves to a new C-state {(1, B), (2, C)} in
which both state requires to enable c1. If the intruder observes
{ }, i.e., c1 is disabled, then it moves to C-state {(3, A)}, which
contains the only possible state consistent with this control
decision. From C-state {(1, B), (2, C)}, the intruder can first
observe event c1 in observation channels and then observe
control decision {c1} in control channels. For this case, the
observer will first move to O-state {(4, D), (5, E)} and then
move to C-state {(4, D), (5, E)}.

B. Verification of Current-State Opacity

The following result reveals that the proposed network ob-
server indeed tracks the state estimate of the intruder.

Proposition 1: For any α∈IS , we have α∈L(Obs(G,S)).
Moreover, the state reached by α can be characterized by

q=

{
(x, z) ∈X×Z :

∃t ∈ L(G× S) s.t. IS(t)=α
and (x, z)=η((x0, z0), t)

}
(9)

where (q, C) = f(q0, α) is the C-state reached by α in
Obs(G,S). (Recall that, by the definition of information-flow,
α always ends up with a projected control decision.)

Proof: See the Appendix. �
For any state q ∈ 2X×Z , we denote by X(q) the set of the first

component of each element, i.e.,

X(q) = {x ∈ X : ∃z ∈ Z s.t. (x, z) ∈ q}.
We have the following result from Proposition 1.

Corollary 1: For any s ∈ L(G× S), the current-state-
estimate is the first component of the state reached by IS(s)
in Obs(G,S), i.e., we have X̂(s) = X(f(IS(s))).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 10,2022 at 03:52:57 UTC from IEEE Xplore.  Restrictions apply. 



890 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 8, NO. 2, JUNE 2021

Proposition 1 says that any information-flow available to
the intruder is contained in the network observer, i.e., IS ⊆
L(Obs(G,S)). The following result further shows that the net-
work observer will only generate valid information-flow.

Proposition 2: LC(Obs(G,S)) = IS , where

LC(Obs(G,S)) = {α ∈ (Σε
o,aΓa)

∗ : f(q0, α) ∈ QC}.
Proof: See the Appendix. �
With Corollary 1 and Proposition 2, we obtain the following

main theorem, which shows that we can indeed use the network
observer to verify opacity.

Theorem 1: Let G× S be a supervisory control system with
insecure observation channels Σo,a, insecure control channels
Σc,a, and secret statesXS . LetObs(G,S) = (Q,Σobs, f, q0) be
its network observer. Then, G× S is current-state opaque if and
only if for any C-state (q, C) ∈ QC , we have X(q) 
⊆ XS .

Proof: See the Appendix. �
We illustrate Theorem 1 by the following example.
Example 3: Again, we consider G and S shown in Fig. 2(a)

and (b), respectively. In Example 1, we have analyzed that secret
string u1c1u1 does not violate opacity. To check whether or not
there exists a secret revealing string, we consider its network
observer Obs(G,S), which is shown in Fig. 3. Clearly, the
only C-state that contains a secret state in {(1, B), (2, C)} and
we have X({(1, B), (2, C)}) = {1, 2} 
⊆ XS = {1}. There-
fore, we conclude that G× S is current-state opaque.

Remark 3: The complexity of checking current-state opacity
using Theorem 1 is exponential in both the number of sys-
tem/supervisor states and the number of insecure controllable
events since the network observer contains at most 2|X|×|Z|+1

states and |Σo,a| × 2|X|×|Z| + 2|Σc,a| × 2|X|×|Z| transitions.

C. Simplified Network Observer

Note that, in the construction of the network observer, states
are partitioned as C-states and O-states in order to precisely
track different status in the information-flow. However, as shown
in Theorem 1, only C-states are considered for the purpose of
verification. To simplify our future developments, we can sim-
plify the network observer by hiding O-states. Specifically, we
write the projected decision in the control channels and the event
in the observation channels as a pair. If a projected control de-
cision γ ∈ Γa is observed directly without seeing an observable
event, then we write this information as (ε, γ). If the intruder first
observes an eventσ ∈ Σo,a followed immediately by a projected
control decisionγ ∈ Γa, then we write this information as (σ, γ).
Then, we can define the simplified network observer, by omitting
O-states, as a new DFA

˜Obs(G× S) = (Q̃, Σ̃obs, f̃ , q̃0) (10)

where
1) Q̃ ⊂ 2X×Z is the set of states.
2) Σ̃obs = Σε

o,a × Γa is the set of events.

3) f̃ : Q̃× Σ̃obs → Q̃ is the transition function defined by:
for any q ∈ Q̃ and (σ, γ) ∈ Σ̃obs, we have

(f̃(q, (σ, γ)), C) = f((q, C), σγ).

Fig. 4. Simplified network observer Õbs(G,S).

Algorithm 1: Simp-Net-Obs Construction.

1: q̃0 ← {η((x0, z0), w)∈X × Z : w∈Σ∗uo} and
Q̃← {q̃0}

2: DFS(˜Obs, q̃0)
3: return˜Obs = (Q̃, Σ̃obs, f̃ , q̃0)

4: procedure DFS(˜Obs, q̃)
5: for all (σ, γ) ∈ Σε

o,a × Γa : f̃(q̃, (σ, γ))! do
6: q̃′ ← f̃(q̃, (σ, γ))

7: Add transition q̃
(σ,γ)−−−→ q̃′ to f̃

8: if q̃′ 
∈ Q̃ then
9: Q̃← Q̃ ∪ {q̃′}

10: DFS(˜Obs, q̃′)
11: end if
12: end for
13: end procedure

4) q̃0 = {(x, z) ∈ X × Z : ∃w ∈ Σ∗uo s.t. (x, z) =
η((x0, z0), w)} is the initial state, which is the same as
the state component of the initial C-state in Obs(G× S).

The simplified network observer can be constructed by Al-
gorithm 1 via a depth-first-search. The network observer can
be constructed analogously, which is omitted due to space con-
straints.

For example, for systemG and supervisorS shown in Fig. 2(a)
and (b), respectively, the simplified network observer˜Obs(G×
S) is shown in Fig. 4. Compared with Obs(G,S) in Fig. 3, all
O-states are merged with C-states.

V. VERIFICATION OF INFINITE AND K-STEP OPACITY USING

TWO-WAY NETWORK OBSERVER

A. Smoothed Information and Reversed Observer

Current-state opacity only guarantees that the intruder does
not know that the system is currently at a secret state. However,
it may use future observation to infer that the system was at a
secret state for some previous instant; such a secret requirement
can be captured by infinite-step opacity and K-step opacity. In
this section, we investigate how to verify these two notions in
the networked setting, which are formally defined as follows.

Definition 2: Given networked supervisory control system
G× S with Σo,a, Σc,a and XS , we say that G× S is

1) infinite-step opaque if

(∀st ∈ L(G× S) : δ(s) ∈ XS)
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[∃s′t′ ∈ L(G× S) : δ(s′) /∈ XS ]

[IS(s) = IS(s
′) ∧ IS(st) = IS(s

′t′)]. (11)

2) K-step opaque if

(∀st ∈ L(G× S) : δ(s) ∈ XS ∧ |PΣo
(t)| ≤ K)

[∃s′t′ ∈ L(G× S) : δ(s′) /∈ XS ]

[IS(s) = IS(s
′) ∧ IS(st) = IS(s

′t′)]. (12)

Let st ∈ L(G× S) be a string in the controlled system and let
PΣo

(st) = σ1 . . . σnσn+1 . . . σn+m, where |PΣo
(s)| = n and

|PΣo
(t)| = m. Then, the information-flow IS(st) can be written

as IS(st) = ısıt, where

ıs = PΣo,a
(σ1)[S(σ1)]Σc,a

· · ·PΣo,a
(σn)[S(σ1 · · ·σn)]Σc,a

ıt = PΣo,a
(σn+1)[S(σ1 · · ·σn+1)]Σc,a

· · ·PΣo,a
(σn+m)[S(σ1 · · ·σn+m)]Σc,a

.

To check infinite-step and K-step opacity, the main difficulty is
to handle the smoothed information ıt. To this end, we utilize
the reversed dynamic of the system as follows. We read the
smoothed information ıt in a reversed manner so that a projected
event is read first before reading its predecessor observable
event. In this way, we are able to track where the system may
start from generating this smoothed information. This idea is
formalized by the reversed network observer, which is a new
DFA

˜ObsR(G× S) = (Q̃R, Σ̃obs,R, f̃R, q̃0,R) (13)

where
1) Q̃R ⊂ 2X×Z is the set of states.
2) Σ̃obs,R ⊆ Γa × Σε

o,a is the set of events.

3) f̃R : Q̃R × Σ̃obs,R → Q̃R is the transition function de-
fined as follows: for any q1, q2 ∈ Q̃R, and (γ, σ) ∈
Σ̃obs,R, we have f̃R(q1, (γ, σ)) = q2 if

q2=

⎧⎪⎪⎨
⎪⎪⎩(x,

′ z′)∈X×Z :

∃(x, z)∈q1, w∈Σ∗uo, σ′ ∈Σo

s.t. (x, z)=η((x,′ z′), σ′w)
and PΣo,a

(σ′) = σ
and [ES(z)]Σc,a

= γ

⎫⎪⎪⎬
⎪⎪⎭ (14)

4) q̃0,R = X × Z is the initial state.
Let (x, z) ∈ X × Z be a pair of plant state and supervisor

state and s ∈ L(G× S, (x, z)) be a string feasible from (x, z)
in the controlled string such that PΣo

(s) = σ1σ2 · · ·σn. Then,
we define the information-flow of s from (x, z) by

IS(s, (x, z))

= PΣo,a
(σ1)[ξ(z, σ1)]Σc,a

PΣo,a
(σ2)[ξ(z, σ1σ2)]Σc,a

· · ·PΣo,a
(σn)[ξ(z, σ1σ2 · · ·σn)]Σc,a

∈ (Σε
o,aΓa)

∗.

Clearly, we have IS(s, (x, z)) = IS(s) when (x, z) = (x0, z0).
Then, the following result reveals that the proposed reversed
network observer indeed computes all possible state pairs that
are consistent with the information-flow in a reversed manner.

Fig. 5. For system G1, we have Σc = {c1, c2} and Σo = Σ,
Σc,a = {c1} and Σo,a = {c1, c2}. (a) G1. (b) S1. (c) G1 × S1.

Fig. 6. Example of the (simplified) network observer and the reversed
network observer for G1 and S1. (a) Õbs(G1 × S1). (b) ÕbsR(G1 × S1).

Proposition 3: For any string (γ1, σ1) . . . (γn, σn) ∈
L(˜ObsR(G× S)), we have

f̃R(q̃0,R, (γ1, σ1) . . . (γn, σn)) ={
(x, z) ∈ X × Z :

∃s ∈ L(G× S, (x, z))
s.t. IS(s, (x, z)) = σnγn . . . σ1γ1

}
.

(15)

Proof: See the Appendix.
Based on Proposition 3, we can further obtain the following

result, which shows that the reversed network observer can
be used together with the network observer to compute the
smoothed-state-estimate of the system.

Theorem 2: For any information-flow σ1γ1 . . . σnγn ∈ IS
and any integer 0 ≤ k ≤ n, we have

f̃((σ1, γ1) · · · (σk, γk)) ∩ f̃R((γn, σn) · · · (γk+1, σk+1)) =⎧⎨
⎩(x, z) ∈ X × Z :

∃st ∈ L(G× S)) s.t. η(s) = (x, z)
and IS(s) = σ1γ1 . . . σkγk
and IS(st) = σ1γ1 . . . σnγn

⎫⎬
⎭ .

(16)

Proof: See the Appendix.
The reversed network observer and its properties are illus-

trated by the following example.
Example 4: Let us consider system G1 and supervisor S1

shown in Fig. 5 (a) and (b), respectively. We assume that
Σc = {c1, c2}, Σo = Σ, Σc,a = {c1}, and Σo,a = {c1, c2}.
Then, the closed-loop system G1 × S1 is shown in Fig. 5(c).
The (simplified) network observer and the reversed network
observer ofG1 × S1 are shown in Fig. 5(a) and (b), respectively.
For the reversed network observer ˜ObsR(G1 × S1), its initial
state is all possible states in G1 × S1. If event ({c1}, c2) occurs,
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then we move to state {(3, E)} since for state (4, D) ∈ q̃0,R,
[ES(D)]Σc,a

= {c1} and η((3, E), c2) = (4, D).

B. Two-Way Network Observer

Theorem 2 essentially says that all possible smoothed-state-
estimates can be captured by combining states in the network
observer and states in the reversed network observer. In order
to verify infinite-step opacity and K-step opacity, we compose
˜Obs(G× S) and ˜ObsR(G× S) together, where the former
tracks all states that are consistent with the current information-
flow while the latter tracks all states that are consistent with
the future information-flow. We call the composed structure the
two-way network observer, which is a DFA

ObsTW (G× S) = (QTW ,ΣTW , fTW , qTW,0) (17)

where
1) QTW ⊆ Q̃× Q̃R is the set of states.
2) ΣTW = (Σ̃obs × {ε}) ∪ ({ε} × Σ̃obs,R) is the set of

events.
3) fTW : QTW × ΣTW → QTW is the transition function

defined as follows: for any state (q1, q2) ∈ QTW and
event σ ∈ Σ̃obs ∪ Σ̃obs,R, the following transitions are
defined whenever they are feasible

fTW ((q1, q2), (σ, ε)) = (f̃(q1, σ), q2) (18)

fTW ((q1, q2), (ε, σ)) = (q1, f̃R(q2, σ)) (19)

4) qTW,0 = (q̃0, q̃0,R) is the initial state.
Still, we only consider the accessible part ofObsTW (G× S).
The two-way network observer has the following properties.

First, we show that, if the intersection of the first and the second
components of a state in QTW is non-empty, then information-
flows leading to each component can be “connected”: one as the
current information-flow and the other as the future information-
flow.

Proposition 4: For any state (q1, q2) ∈ QTW such that
q1 ∩ q2 
= ∅, there exist strings s = (σ1, γ1) . . . (σn, γn) ∈
L(˜Obs(G× S)) and t = (γ′1, σ

′
1) . . . (γ

′
m, σ′m) ∈ L(˜ObsR

(G× S)) such that f̃(q̃0, s) = q1, f̃R(q̃0,R, t) = q2 and

(σ1, γ1) . . . (σn, γn)(σ
′
m, γ′m) . . . (σ′1, γ

′
1) ∈ L(˜Obs(G× S)).

Proof: See the Appendix. �
Example 5: Consider again G1 in Fig. 5(a) and S1 in

Fig. 5(b). The two-way network observer ObsTW (G1 × S1)

is shown in Fig. 7 , which essentially composes ˜Obs(G×
S) and ˜ObsR(G× S) asynchronously. For the sake of sim-
plicity, each state in ObsTW (G1 × S1) is renamed accord-
ing to the state names in Fig. 6(a) and (b). For instance,
state (M2, N4) represents state ({(1, B), (2, C)}, {(2, C)}),
which can be reached by string ((ε, {c1}), ε)(ε, ({}, c1)). Since
{(1, B), (2, C)} ∩ {(2, C)} 
= ∅, by Proposition 4, we can find

string (ε, {c1})(c1, {}) ∈ L(˜Obs(G× S)).

Fig. 7. Two-way network observer ObsTW (G1 × S1) for
the networked system G1 × S1 in Fig. 5(c) and events
in {1, 2, 3, 4, 5, 6, 7, 8} represent events in {((ε, {c1}), ε),
((c1, {c1}), ε), ((c1, {}), ε), ((c2, {c1}), ε), (ε, ({c1}, ε)), (ε, ({c1}, c1)),
(ε, ({}, c1)), (ε, ({c1}, c2))}, respectively.

C. Verification of Infinite-Step and K-Step Opacity

The following two theorems show how the two-way network
observer can be used to verify infinite-step opacity and K-step
opacity. First, we show how to check infinite-step opacity.

Theorem 3: Let G× S be a supervisory control system
with insecure observation channels Σo,a, insecure control
channels Σc,a, and secret states XS . Let ObsTW (G× S) =
(QTW , ETW , fTW , qTW,0) be its two-way network observer.
Then, G× S is infinite-step opaque if and only if

∀(q1, q2) ∈ QTW : q1 ∩ q2 
⊆ XS or q1 ∩ q2 = ∅. (20)

Proof: See the Appendix.
For any string s ∈ L(ObsTW (G× S)), we denote by |τ(s)|

the number of events in s in the form of (ε, σ). Then, we have
the following theorem for the verification of K-step opacity.
Its proof is omitted as it is similar to the case of infinite-step
opacity. Specifically, the main difference is that we are only
interested in searching states in the two-way network observer
that can be reached within K steps counted according to the
second component of the transitions.

Theorem 4: Let G× S be a supervisory control system with
Σo,a,Σc,a, andXS . LetObsTW (G× S) be its two-way network
observer. Then, G× S is K-step opaque, if and only if, for
any string s ∈ L(ObsTW (G× S)) such that fTW (qTW,0, s) =
(q1, q2), we have

[q1 ∩ q2 ⊆ XS ∧ q1 ∩ q2 
= ∅]⇒ |τ(s)| > K. (21)

We illustrate how to verify infinite-step opacity and K-step
opacity by the following example.

Example 6: Consider again the system G1 in Fig. 5(a)
and the supervisory S1 in Fig. 5(b), then we verify infinite-
step opacity by using two-way network observer shown
in Fig. 7. We notice that state (M2, N3), which denotes
state ({(1, B), (2, C)}, {(1, B), (4, D)}), is reached by string
((ε, {c1}), ε)(ε, ({c1}, c1)) or string (ε, ({c1}, c1))((ε, {c1}), ε)
and these two strings are highlighted by blue transition
lines in Fig. 7. Since {(1, B), (2, C)} ∩ {(1, B), (4, D)} =
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(1, B) ⊆ XS = {(1, B)}. Therefore, we know that the net-
worked supervisory control system G1 × S1 is not infinite-step
opaque. Specifically, when the intruder observes {c1}c1{c1},
it knows with certainty that G1 × S1 was in a secret state
1-step earlier. In fact, G1 × S1 is not 1-step opaque as
|τ((ε, ({c1}, c1))((ε, {c1}), ε))| = 1.

Remark 4: Note that the reversed network observer is neither
the reverse of the network observer nor the network observer
of the reversed plant model. Specifically, the intruder observes
both communication channels and control channels; this issue
cannot be captured by the two-way observer in [29]. Therefore,
although our approach is motivated by the two-way observer
in [29], the original construction cannot be directly adopted for
our networked setting. We need the proposed new construction
for the reversed observer to track where the system may start
from to generate the smoothed information in the multichannel
network setting.

Remark 5: Let us analyze the complexity of the verification
of infinite-step opacity andK-step opacity in networked system.
The network two-way observer contains at most 2|X|×|Z| ×
2|X|×|Z| states and |Σo,a| × 2|Σc,a| × 2|X|×|Z| × 2|X|×|Z| tran-
sitions. To check infinite-step opacity, it suffices to preform a
reachability search within the two-way observer, and to check
K-step opacity, it suffices to preform a K-step (in terms of the
moves in the second component) depth-first search within the
two-way observer. Therefore, both properties in the networked
setting can be checked in exponential-time.

VI. CONCLUSION

In this article, we proposed a framework for analyzing
information-flow security of networked supervisory control sys-
tems over multichannel networks. We provided a model to
describe the information leakage in communication networks
and adopted three opacity notions (current-state, infinite-step,
and K-step opacity) to evaluate the security status. Effective ap-
proaches were proposed to verify current-state opacity, infinite-
step opacity, and K-step opacity for networked supervisory
control systems. Our results provided a generalized framework
for the analysis of opacity for networked supervisory control
systems by considering both insecure control channels and in-
secure observation channels simultaneously. Note that this work
focused on the verification problem, i.e., to check whether or not
a given networked supervisory control system is opaque. For fu-
ture work, we are also interested in investigating how to synthe-
size a networked supervisor that is “opaque-by-construction.”

APPENDIX

PROOF OF PROPOSITION 1

Proof: We prove by induction on the length of α.
Induction Basis: When |α| = 0, clearly α = ε ∈

L(Obs(G,S)) and (q, C) is the initial state in Obs(G,S).
Therefore, we have

q = {(x, z) ∈ X×Z : ∃t ∈ Σ∗uo s.t. (x, z) = η((x0, z0), t)}

=

{
(x, z) ∈ X×Z :

∃t ∈ L(G× S) s.t. PΣo
(t)=ε

and (x, z) = η((x0, z0), t)

}

=

{
(x, z) ∈ X×Z :

∃t ∈ L(G× S) s.t. IS(t)=α
and (x, z) = η((x0, z0), t)

}
.

Note that, the last equality comes from the fact that, for any
t ∈ L(G× S), IS(t) = ε if and only if PΣo

(t) = ε. Therefore,
the induction basis holds.

Induction Hypothesis: Assume that α ∈ L(Obs(G,S)) and
(9) holds for |α| = k. To proceed the induction step, we need to
consider the following two cases.

Case 1: The next observation of the intruder is a projected
control decision γ ∈ Γa.

For the sake of clarity, we write f(q0, α) = (qk, C) and
f(q0, αγ) = (qk+1, C). That is, the induction hypothesis is

qk=

{
(x, z) ∈X×Z :

∃t ∈ L(G× S) s.t. IS(t)=α
and (x, z)=η((x0, z0), t)

}
. (22)

First, we show that information-flow αγ is well defined in
Obs(G,S). Since αγ ∈ IS , we know that there exists s ∈
L(G× S) such that IS(s) = αγ. We write s in the form of
s = s′σw, where σ ∈ Σo and w ∈ Σ∗uo. Furthermore, we have
σ ∈ Σo,r; otherwise, σ should be observed before γ. Then, we
have IS(s

′) = α and [ES(ξ(s
′σw))]Σc,a

= γ. By the induction
hypothesis, we have that η(s′) ∈ qk. Therefore, by the definition
of f , we know that f(qk, γ)!, i.e., αγ ∈ L(Obs(G,S)).

Then, by the definition of f , we have fCC((qk, C), γ) =
(qk+1, C), i.e.,

qk+1=

⎧⎨
⎩(x′, z′)∈X×Z :

∃(x, z)∈qk, σ∈Σo,r, w∈Σ∗uo
s.t. (x′, z′)=η((x, z), σw)

and [ES(z
′)]Σc,a

= γ

⎫⎬
⎭

=

⎧⎨
⎩(x, z)∈X×Z :

∃tσw∈L(G×S), σ∈Σo,r, w∈Σ∗uo
s.t. (x, z)=η((x0, z0), tσw),
IS(t)=α and [ES(z)]Σc,a

= γ

⎫⎬
⎭

=

{
(x, z) ∈X×Z :

∃s ∈ L(G× S) s.t. IS(s)=αγ
and (x, z)=η((x0, z0), t)

}
.

Case 2: Afterα, the intruder first observes an observable event
σ ∈ Σo,a and then observes the next projected control decision
γ ∈ Γa.

For this case, we write f(q0, α) = (qk, C), f(q0, ασ) =
(qk+1, O), and f(q0, ασγ) = (qk+2, C). The induction hypoth-
esis is still

qk=

{
(x, z) ∈X×Z :

∃t ∈ L(G× S) s.t. IS(t)=α
and (x, z)=η((x0, z0), t)

}
. (23)

To proceed the induction step, first, we show that information-
flow ασγ is well-defined in Obs(G,S). Since ασγ ∈
IS , we know that there exists s ∈ L(G× S) such that
IS(s) = ασγ. We can write s in the form of s = s′σw,
where w ∈ Σ∗uo and IS(s

′) = α. By the induction hypothe-
sis, we have that η(s′) ∈ qk. Moreover, since σ ∈ Σo,a, by
(6), we have fCO(qk, σ)! and η(s′σ) ∈ qk+1. Then, since
[ES(ξ(s

′σ))]Σc,a
= [ES(ξ(s

′σw))]Σc,a
= γ, by (7), we have

η(s′σw) ∈ qk+2. That is, ασγ ∈ L(Obs(G,S)).
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Then, by the definition of f , we have fCO((qk, C), σ) =
(qk+1, O) and fOC((qk+1, C), γ) = (qk+2, C). Therefore,

qk+2=

⎧⎨
⎩ (x′, z′)
∈ X × Z

:
∃(x, z)∈qk+1, w ∈ Σ∗uo s.t.

[ES(z)]Σc,a
= γ and

(x′, z′)=η((x, z), w)

⎫⎬
⎭

=

⎧⎨
⎩ (x′, z′)
∈X × Z

:
∃(x, z)∈qk, w ∈ Σ∗uo s.t.
[ES(ξ(z, σ))]Σc,a

= γ and
(x′, z′)=η((x, z), σw)

⎫⎬
⎭

=

⎧⎨
⎩ (x, z)
∈X × Z

:
∃t ∈ L(G× S), w ∈ Σ∗uo

s.t. IS(t)=α, (x, z)=η(tσw)
and [ES(ξ(tσ))]Σc,a

= γ

⎫⎬
⎭

=

{
(x, z)

∈X × Z
:
∃s ∈ L(G× S) s.t. IS(s)=ασγ

and (x, z)=η((x0, z0), s)

}
.

Since the induction step holds for both cases, we complete the
inductive proof. �

Proof of Proposition 2
Proof: By Proposition 1, we already have IS ⊆
LC(Obs(G,S)). It remains to show thatLC(Obs(G,S)) ⊆ IS .
Let us consider an arbitrary string α ∈ LC(Obs(G,S)). Next,
we show that α ∈ IS by induction on the length of α. When
α = ε, we know immediately that α ∈ IS . Now we assume
that, α ∈ IS when |α| = k and we consider the following two
cases:

Case 1: αγ ∈ LC(Obs(G,S)), where γ ∈ Γa. By the in-
duction hypothesis, we know that there exists a string s ∈
L(G× S) such that IS(s) = α. Since αγ ∈ L(Obs(G,S)), by
the definition of fCC , we know that there exist σ ∈ Σo,r, w ∈
Σ∗uo such that [S(tσw)]Σc,a

= γ, where t is a string such
that IS(t) = IS(s) = α. Therefore, we know that IS(tσw) =
αPΣo,a

(σ)[S(tσw)]Σc,a
= αγ ∈ IS .

Case 2:ασγ ∈ LC(Obs(G,S)), whereσ ∈ Σo,a andγ ∈ Γa.
By the induction hypothesis, we still know that there exists
a string s ∈ L(G× S) such that IS(s) = α. Since ασsw ∈
L(Obs(G,S)), by the definition of fCO and fOC , we know
that there exists w ∈ Σ∗uo such that [S(tσw)]Σc,a

= γ, where t
is a string such that IS(t) = IS(s) = α. Therefore, IS(tσw) =
αPΣo,a

(σ)[S(tσw)]Σc,a
= ασγ ∈ IS .

Since the induction step holds for both cases, we complete
the proof. �

Proof of Theorem 1
Proof: According to Corollary 1, G× S is current-state

opaque if and only if∀s ∈ L(G× S) : X(f(IS(s))) = X̂(s) 
⊆
XS . Based on Proposition 2, this is further equivalent to
∀(q, C) ∈ QC : X(q) 
⊆ XS holds as anyC-state is reached and
only reached by strings in IS . This ends the proof.

Proof of Proposition 3
Proof: We prove it by induction on n. When n = 0,

it is clear that f̃R(q̃0,R, ε) = X × Z since IS(ε, (x, z)) = ε
for any (x, z) ∈ X × Z. Now, let us assume that Proposi-
tion 3 holds for n = k. For the sake of simplicity, we denote
f̃R(q̃0,R, (γ1, σ1) . . . (γk, σk)) by Sk. Then, for n = k + 1, we

have that

f̃R(q̃0,R, (γ1, σ1) . . . (γk, σk)(γk+1, σk+1))

= f̃R(Sk, (γk+1, σk+1))

=

⎧⎨
⎩ (x, z)
∈ X × Z

:
∃(x′, z′)∈Sk, w∈Σ∗uo, σ′ ∈ Σo s.t.

(x′, z′)=η((x, z), σ′w), PΣo,a
(σ′) = σk+1

and [ES(z
′)]Σc,a

= γk+1

⎫⎬
⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(x, z) ∈ X × Z :

∃σ′ws ∈ L(G× S, (x, z))
s.t. IS(s, (x′, z′)) = σkγk . . . σ1γ1

and (x′, z′)=η((x, z), σ′w)
and PΣo,a

(σ′) = σk+1

and [ES(z
′)]Σc,a

= γk+1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎨
⎩(x, z) ∈ X × Z :

∃σ′ws ∈ L(G× S, (x, z))
s.t. IS(σ′ws, (x, z))
= σk+1γk+1σkγk . . . σ1γ1

⎫⎬
⎭ .

Note that the third equivalence follows from the in-
duction hypothesis, and the last equation holds since
IS(σ

′ws, (x, z)) = IS(σ
′w, (x, z))IS(s, (x′, z′)) = PΣo,a

(σ′)
[ξ(z, σ′)]Σc,a

σkγk . . . σ1γ1 = σk+1γk+1 . . . σ1γ1. �
Proof of Proposition 4
Proof: By the construction of ObsTW (G× S), there ex-

ist strings s ∈ L(˜Obs(G× S)) and t ∈ L(˜ObsR(G× S))
such that f̃(q̃0, s) = q1 and f̃R(q̃0,R, t) = q2. Let s =
(σ1, γ1) . . . (σn, γn) and t = (γ′1, σ

′
1) . . . (γ

′
m, σ′m). Let (x, z) ∈

q1 ∩ q2 be a state in X × Z. Then, we have

i) ∃(x0, z0) ∈ q̃0, ∃s1 ∈ L(G× S, (x0, z0)) :

IS(s1, (x0, z0)) = σ1γ1 . . . σnγn ∧ η((x0, z0), s1) = (x, z)

ii) ∃(x,′ z′) ∈ q̃0,R, ∃t1 ∈ L(G× S, (x, z)) :

IS(t1, (x, z)) = σ′mγ′m . . . σ′1γ
′
1 ∧ η((x, z), t1) = (x,′ z′).

Note that i) is from Proposition 1, while ii) comes from
Proposition 3. Therefore, we know that η((x0, z0), s1t1) =
(x′, z′) and IS(s1t1, (x0, z0)) = σ1γ1 . . . σnγnσ

′
mγ′m . . . σ′1γ

′
1.

This implies that (σ1, γ1) . . . (σn, γn)(σ
′
m, γ′m) . . . (σ′1, γ

′
1) ∈

L(˜Obs(G× S)). �
Proof of Theorem 2
Proof: According to the definition of f̃ , we have that

f̃((σ1, γ1) · · · (σk, γk)) ={
(x, z) ∈ X × Z :

∃s ∈ L(G× S)) s.t. η(s) = (x, z)
and IS(s) = σ1γ1 . . . σkγk

}
Based on Proposition 3, we obtain that

f̃R((γn, σn) · · · (γk+1, σk+1)) ={
(x, z) ∈ X × Z :

∃t ∈ L(G× S, (x, z))
s.t. IS(t, (x, z)) = σk+1γk+1 . . . σnγn

}
.

Then, by intersecting these two sets, we obtain Theorem 2. �
Proof of Theorem 3
Proof: (⇒) By contraposition. Suppose that there ex-

ists a state (q1, q2) ∈ QTW such that q1 ∩ q2 
= ∅ and
q1 ∩ q2 ⊆ XS . According to Proposition 4, there exist
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strings α = (σ1, γ1) . . . (σn, γn) ∈ L(˜Obs(G× S)) and β =

(γ′1, σ
′
1) . . . (γ

′
m, σ′m) ∈ L(˜ObsR(G× S)) such that f̃(q̃0, α) =

q1, f̃R(q̃0,R, β) = q2 and

σ1γ1 . . . σnγnσ
′
mγ′m . . . σ′1γ

′
1 ∈ IS .

Let st ∈ L(G× S) be a string such that IS(s) = σ1γ1 . . . σnγn
and IS(st) = σ1γ1 . . . σnγnσ

′
mγ′m . . . σ′1γ

′
1. Then, by Theo-

rem 2, we have that{
η(s′) :

∃s′t′ ∈ L(G× S)) s.t.
IS(s

′) = IS(s) and IS(s
′t′) = IS(st)

}
⊆ XS .

This means that G× S is not infinite-step opaque.
(⇐) Also by contraposition. Suppose that G× S is not

infinite-step opaque w.r.t. Σo,a, Σc,a and XS . This means that
there exists a string st ∈ L(G× S) such that{

η(s′) :
∃s′t′ ∈ L(G× S) s.t.

IS(s
′) = IS(s) and IS(s

′t′) = IS(st)

}
⊆ XS .

Then, let

IS(st) = σ1γ1 . . . σnγnσn+1γn+1 . . . σn+mγn+m ∈ IS
such that IS(s) = σ1γ1 . . . σnγn. This implies that

α := (σ1, γ1) . . . (σn, γn) ∈ L(˜Obs(G× S)) and β :=

(γn+m, σn+m) . . . (γn+1, σn+1) ∈ L(˜ObsR(G× S)). Then,
by the construction of ObsTW (G× S), we have string

ϕ = ((σ1, γ1), ε) . . . ((σn, γn), ε)(ε, (γn+m, σn+m))

. . . (ε, (γn+1, σn+1)) ∈ L(ObsTW (G× S)) (24)

and string ϕ leads to state (q1, q2) := (f̃(q̃0, α), f̃R(q̃0,R, β)).
According to Theorem 2, we have

q1 ∩ q2 =

{
η(s′) :

∃s′t′ ∈ L(G× S)) s.t.
IS(s

′) = IS(s) and IS(s
′t′) = IS(st)

}
.

Therefore, q1 ∩ q2 ⊆ XS . Furthermore, q1 ∩ q2 
= ∅ as η(s) ∈
q1 ∩ q2. This completes the contrapositive proof. �
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