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Secure Your Intention: On Notions of Pre-Opacity
in Discrete-Event Systems

Shuo Yang, Student Member, IEEE, Xiang Yin, Member, IEEE

Abstract—This paper investigates an important information-
flow security property called opacity in partially-observed
discrete-event systems. We consider the presence of a passive
intruder (eavesdropper) that knows the dynamic model of the
system and can use the generated information-flow to infer some
“secret” of the system. A system is said to be opaque if it always
holds the plausible deniability for its secret. Existing notions of
opacity only consider secret either as currently visiting some
secret states or as having visited some secret states in the past.
In this paper, we investigate information-flow security from a new
angle by considering the secret of the system as the intention to
execute some particular behavior of importance in the future.
To this end, we propose a new class of opacity called pre-opacity
that characterizes whether or not the intruder can predict the
visit of secret states a certain number of steps ahead before
the system actually does so. Depending the prediction task of
the intruder, we propose two specific kinds of pre-opacity called
K-step instant pre-opacity and K-step trajectory pre-opacity to
specify this concept. For each notion of pre-opacity, we provide
a necessary and sufficient condition as well as an effective
verification algorithm. The complexity for the verification of pre-
opacity is exponential in the size of the system as we show that
pre-opacity is inherently PSPACE-hard. Finally, we generalize
our setting to the case where the secret intention of the system
is modeled as executing a particular sequence of events rather
than visiting a secret state.

Index Terms—Discrete-Event Systems, Opacity, Prediction

I. INTRODUCTION

In the past decade, the notion of opacity has drawn a lot
of attention in the Discrete-Event Systems (DES) literature
as it provides a formal approach towards the verification
and design of information-flow security for dynamic systems.
Roughly speaking, opacity is a confidentiality property that
captures whether or not the information-flow generated by a
dynamic system can reveal some “secret behavior” to an out-
side observer (intruder) that is potentially malicious. In other
words, an opaque system should always maintain the plausible
deniability for its secret behavior during its execution. In
the context of DES, opacity has been extensively studied for
different system models including finite-state automata [1]–
[4], labeled transition systems [5], [6] and Petri nets [7]–
[10]. More recently, opacity has been extended to continuous
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dynamic systems with possibly infinite state spaces and time-
driven dynamics [11]–[13]. Many enforcement techniques
have also been proposed when the original system is not
opaque; see, e.g., [14]–[24]. Opacity has also been applied
to certify/enforce security in many real-world systems includ-
ing mobile robots [25], location-based services [26], battery
management systems [27] and web services [28]. The reader
is referred to the survey papers [29], [30] for more details on
opacity and its recent developments.

In order to capture different security requirements, different
notions of opacity have been proposed in the literature. For
example, in language-based opacity [31], the secret is formu-
lated as the executions of some particular secret strings. As
shown in [32], this formulation is equivalent to the notion of
current-state opacity, where the secret is formulated as a set
of secret states and a system is current-state opaque if the
intruder cannot determine for sure that the system is currently
at a secret state. In some situations, the system may want
to hide its initial location or its location at some specific
previous instant; such requirements can be captured by initial-
state opacity [2] and K/infinite-step opacity [1], [3], [33], [34],
respectively. More recently, quantitative notions of opacity
have been proposed for stochastic DES in order to measure
the secret leakage of the system; see, e.g., [35]–[40].

As we can see from the above discussion, “secret” in opacity
analysis is actually a generic concept. Based on what kind
of information the user would like to hide, or equivalently,
how the intruder can utilize information to infer the secret
of the system, existing notions of opacity in the literature as
reviewed above can generally be divided into the following
two categories:
• Opacity for Current Information: the intruder wants to

determine the current behavior of the system based on
the current observation. In other words, the user does not
want the outsider to know for sure that it is currently
doing something secret. This category includes, e.g.,
current-state opacity and language-based opacity.

• Opacity for Delayed Information: the intruder wants to
determine the previous secret behavior of the system at
some instant based on the current observation. In other
words, the user does not want the outsider to know for
sure that it has done something secret at some previous
instant. This category includes, e.g., initial-state opacity,
K-step opacity and infinite-step opacity. Note that de-
layed information is involved here as the intruder does
not need to specify the visit of a secret state immediately;
it can use future information to improve its knowledge
about the previous instants.
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Fig. 1. A motivating example with Eo = {o1, o2, o3} and Euo = {u1, u2}.
State 9 is the target (secret) state.

There are also some works that combine these two types of
opacity together, e.g., by combing current-state opacity and
initial-state opacity, one can define the notion of initial-final-
state opacity [32].

In some applications, however, the “secret” one wants
to hide can be its intention to do something of particular
importance in the future. As a simple motivating example, let
us consider a single robot moving in a region whose mobility
is described by a DES shown in Figure 1, where each state
represents a location and each transition represents an action.
Some actions are assumed to be observable by outsider; Eo =
{o1, o2, o3} are observable actions. The robot may choose to
attack state 9 by reaching it. However, it does not want to
reveal its intention to attack state 9 too early; otherwise, e.g.,
some defense strategy can be implemented in advance. Clearly,
the shortest path to reach state 9 is 0

o1−→ 3
o2−→ 6

o3−→ 9.
However, by doing so, the outsider will know the robot’s
intention of attack two steps ahead just by observing the first
action o1. On the other hand, the robot can choose to attack
state 9 via path 0

u2−→ 2
o2−→ 5

o1−→ 8
o2−→ 11

o3−→ 9, which
is longer but allows the robot to hide its intention of visiting
state 9 until it actually reaches it. This is because this path has
the same observation of 0

u1−→ 1
o2−→ 4

o1−→ 7
o2−→ 10 whose

continuation may not necessarily be secret. Existing notions of
opacity cannot capture this scenario as this problem essentially
requires another type of opacity for future information: the user
does not want the outsider to know too early for sure that it
will do something secret at some future instant.

In this paper, we investigate opacity from a new angle by
considering the system’s intention of executing some particular
behavior as the secret. Then we propose a new type of opacity,
called pre-opacity, to characterize whether or not the secret
intention of the system can be revealed. We follow the standard
setting of opacity by considering a passive intruder modeled as
an eavesdropper that knows the model of the system. Then we
propose two notions of pre-opacity called K-step instant pre-
opacity and K-step trajectory pre-opacity; both require that
the intruder cannot determine secret future information K-
step ahead. However, the former emphasizes that the intruder
cannot determine the specific instant when the system will
be at secret states, while the latter requires that the intruder
cannot determine that the system will visit secret states in the
future unavoidably without the need of specifying the precise
instant of being secret. Properties of these two notions of pre-
opacity are investigated and we show that instant pre-opacity
is strictly weaker than trajectory pre-opacity. Furthermore,

for each pre-opacity, we provide necessary and sufficient
condition as well as effective verification algorithm. We show
that both properties are PSPACE-hard; hence the exponential
verification complexity is unavoidable. Also, we discuss the
case where “secrets” are modeled as a sequence pattern rather
secret states.

In the systems theory, there are three fundamental types of
estimation problems: filtering, smoothing and prediction. Es-
sentially, current-state opacity can be viewed as the plausible
deniability for secret under filtering and infinite/K-step opacity
can be viewed as the plausible deniability for secret under
smoothing. Analogously, the proposed notion of pre-opacity
can also be interpreted as the plausible deniability for secret
under prediction. Therefore, our new notion also generalizes
the framework of opacity from the systems theory point of
view.

The proposed notion of pre-opacity, in particular, trajectory
pre-opacity, is closely related to the notion of fault predictabil-
ity (or prognosability) in the literature; see, e.g., [41]–[46].
However, predictability requires that any fault can be predicted
before its occurrence, but our notion of pre-opacity requires
that any secret cannot be predicted before it actually happens.
Furthermore, our notion of instant pre-opacity is much more
different since it requires to determine the precise instant of
being secret, which is not required in predictability analysis.
Also, in fault prediction problems, one is only interested in
predicting the first occurrence of fault. However, in pre-opacity
analysis, the system’s behavior can become secret/non-secrete
intermittently in the sense that, even when the intruder fails
to predict the first secret behavior, it may still has chance to
predict some future secret so that the security of the system
can still be threatened. Therefore, although predictability is
conceptually related to our notion of pre-opacity, these two
properties are technically very different.

The rest of the paper is organized as follows. In Section II,
we describe the system model and review the existing notions
of opacity. Section III introduces the two new notions of
pre-opacity and discusses their properties. In Section IV, we
provide effective algorithms for the verification of notions of
pre-opacity. The proposed pre-opacity is further generalized to
the case of sequence pattern in Section V. Finally, we conclude
this paper by Section VI.

II. PRELIMINARIES

A. System model

Let E be a finite set of events. A string is a finite sequence
of events and we denote by E∗ the set of all strings over E
including the empty string ε. For any string s ∈ E∗, we denote
by |s| the length of s with |ε| = 0. A language L ⊆ E∗ is
a set of strings, and L̄ denotes the prefix-closure of L, i.e.,
L̄ = {u ∈ E∗ : ∃v ∈ E∗ s.t. uv ∈ L}.

We consider a discrete-event system modeled by a finite-
state automaton (FSA)

G = (X,E, f,X0, Xm),

where X is the finite set of states, E is the finite set of events,
f : X×E → X is the partial deterministic transition function
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such that f(x, σ) = x′ means that there exists a transition
from x to x′ with event label σ, X0 ⊆ X is the set of initial
states and Xm ⊆ X is the set of marked states. The transition
function f is also extended to f : X × E∗ → X recursively
by: for any x ∈ X, s ∈ E∗, σ ∈ E, we have f(x, sσ) =
f(f(x, s), σ) with f(x, ε) = x.

The language generated by G from state x ∈ X is defined
by L(G, x) = {s ∈ E∗ : f(x, s)!}, where “!” means “is
defined”. Also, we define L(G,Q) :=

⋃
x∈Q L(G, x) as the

language generated from a set of states Q ⊆ X . Therefore,
the language generated by G is L(G) := L(G,X0). For the
sake of simplicity, hereafter, we assume that the system G
is live, i.e., for any x ∈ X , there exists σ ∈ Σ such that
f(x, σ)!. Then the marked language of G is Lm(G) = {s ∈
E∗ : ∃x0 ∈ X0, s.t. f(x0, s) ∈ Xm}. When marked states
are not considered, i.e., Xm = ∅, we will omit Xm from the
tuple and represent a FSA by G = (X,E, f,X0).

B. Intruder Model and Opacity

Following the standard setting of opacity, we assume that
the intruder is modeled as a passive observer (eavesdropper),
which has the full knowledge of the system’s structure. By
“passive”, we mean that the intruder can only observe some
behavior generated by the system, but it cannot actively affect
the behavior of the system. Formally, we assume that the event
set E is partitioned as:

E = Eo∪̇Euo,

where Eo and Euo are the set of observable events and the
set of unobservable events, respectively. The natural projection
from E to Eo is a mapping P : E∗ → E∗o defined recursively
by:

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Eo

P (s) if σ /∈ Euo
(1)

The natural projection is also extended to P : 2E
∗ → 2E

∗
o , i.e.,

P (L) = {t ∈ E∗o : ∃s ∈ L s.t. P (s) = t} for any L ⊆ E∗.
When string s ∈ L(G) is generated by the system, the

intruder observes P (s) and it can use this observation together
with the dynamic model of the system to infer which state the
system could be in at some specific instant. In opacity analysis,
it is assumed that the system has a set of secret states, denoted
by XS ⊆ X . Roughly speaking, a system is said to be opaque
if the intruder can never determine for sure that the system
is/was at a secret state based on its observation. Here, we
review the notion of K-step opacity which can be used to
define current-state opacity and infinite-step opacity.

Definition 1. (K-Step Opacity) [1] Given system G, set of
observable events Eo, set of secret states XS , and non-
negative integer K ∈ N, system G is said to be K-step opaque
(w.r.t. Eo and XS) if

(∀x0 ∈ X0,∀st ∈ L(G, x0) : f(x0, s) ∈ XS ∧ |P (t)| ≤ K)

(∃x′0 ∈ X0)(∃s′t′ ∈ L(G, x′0)) s.t.

[P (s) = P (s′)] ∧ [P (t) = P (t′)] ∧ [f(x′0, s
′) /∈ XS ]. (2)

Furthermore, system G is said to be
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Fig. 2. For both systems, we have X0 = {0}, XS = {4, 7} and Eo =
{a, b, c}. .

• current-state opaque if it is 0-step opaque;
• infinite-step opaque if it is K-step opaque for any K ≥ 0.

Intuitively, K-step opacity says that, whenever the system
visits a secret state, it should be able to keep this secret
unrevealed within the next K steps. In other words, the
intruder should never be able to determine that the system
was at a state secret for any instant in the past K steps. Note
that current-state opacity can be viewed as a special case of K-
step opacity (K = 0) as it essentially requires that the intruder
cannot determine for sure that the system is currently at a
secret state. To verify current-state opacity, one can construct
the current-state estimator (or the observer) and check whether
or not there exists a reachable estimator state that only contains
secret states. The verification of K-step opacity and infinite-
step opacity are more involved as they require the computation
of delayed state estimate, which can be done by constructing
the two-way observer [3].

Example 1. Let us consider system G1 shown in Figure 2(a),
where XS = {4, 7} and Eo = {a, b, c}. Clearly, this system
is current-state opaque. For example, by observing ab, the
intruder cannot determine whether the system is at secret
state 4 or at non-secret state 5 since P (ab) = P (uab) = ab.
Similarly, when secret state 7 is reached via uabc, the intruder
still cannot distinguish this state from non-secret state 6.
On the other hand, this system is not 1-step opaque. This
is because, by observing abcb, the intruder can determine
for sure that the system was at secret state 7 one step ago.
Therefore, G1 is also not infinite-step opaque.

III. NOTIONS OF PRE-OPACITY

In this section, we first provide the definitions of K-step
instant pre-opacity and K-step trajectory pre-opacity for DES.
Then we discuss properties of the proposed notions of pre-
opacity.

A. Definitions of K-step Instant/Trajectory Pre-Opacity

In the existing notions of opacity, secret is either character-
ized by whether the system is doing something secret (current-
state opacity) or characterized by whether the system has done
something secret (K-step and infinite-step opacity). These
settings essentially assume that the system is operating against
an intruder whose functionality is a current-state estimator or
a delayed state-estimator.
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However, in some applications, what the system wants to
hide might be its intention, i.e., maintain the plausible denia-
bility for its willing to do something secret in the future. In this
setting, the system is essentially operating against an intruder
that can be interpreted as a predictor. More specifically, the
user may require that the intruder should never be able to
determine its intention of visiting a secret state too early, which
is characterized by a parameter K. To this end, we first propose
the notion of K-step instant pre-opacity as follows; the reason
why we use terminology “instant” here will be clear soon.

Definition 2. (K-Step Instant Pre-Opacity) Given system G,
set of observable events Eo, set of secret states XS , and non-
negative integer K ∈ N, system G is said to be K-step instant
pre-opaque (w.r.t. Eo and XS) if

(∀x0 ∈ X0,∀s ∈ Lo(G, x0))(∀n ≥ K)

(∃x′0 ∈ X0,∃s′ ∈ Lo(G, x′0),∃t ∈ L(G, f(x′0, s
′)) s.t.

[P (s) = P (s′)] ∧ [|t| = n] ∧ [f(x′0, s
′t) /∈ XS ] (3)

where

Lo(G, x) := (L(G, x) ∩ E∗Eo) ∪ {ε}

is the set of strings generated from x that end up with
observable events including the empty string.

Intuitively, K-step instant pre-opacity requires that, for any
string s generated from some initial state x0 and any future
instant n ≥ K, there exists another observation-equivalent
string s′ generated from some initial state x′0 such that s′ can
reach a non-secret state in exact n steps. In other words, the
intruder can never determine more than K steps ahead, based
on its current observation, that the system will visit a secret
state at some future instant. Therefore, K can be viewed as a
parameter that determines how early the user does not want
to reveal its intention. For instance, if K = 2, then the user
may allow the intruder to determine just one step ahead that
it will visit a secret system. We use the following example to
illustrate this notion.

Example 2. First, let us consider again system G1 in Fig-
ure 2(a). One can easily check that this system is 1-step instant
pre-opaque. For example, for string a ∈ Lo(G), the intruder
cannot predict for sure that the system will be at a secret in
one step since there exist another string ua and its one-step
extension b such that P (ua) = P (a) but f(0, uab) = 5 /∈ XS .
Similarly, the intruder also cannot predict for sure that the
system will be at a secret after 2 steps. For example, when
observing ε, the system may reach non-secret state 3 in two
steps, which protects the possible secret intention of executing
ab; when observing a, the system may reach non-secret state
6 in two step, which protects the possible secret intention of
executing uabc.

However, for system G2 in Figure 2(b), where XS = {4, 7}
and Eo = {a, b, c}, one can check that this system is not 1-
step instant pre-opaque. This is because, by observing c, the
intruder can determine for sure that the system is either at
state 2 or at state 5. However, from either state 2 or 5, the
system will reach a secret state in the next step. Therefore,

its intention of visiting secret states will be revealed one step
before it actually happens.

Remark 1. In Definition 2, “step” is counted by the number
of occurrences of actual events rather than the occurrences
of observable events, i.e., we consider |t| = n rather than
|P (t)| = n. We believe this setting is more natural for
predicting future instants. Furthermore, we consider string s
in Lo(G, x0) rather than L(G, x0). This implicitly assumes
that the intruder will make a prediction immediately after
observing a new observable event. Hereafter, we will introduce
the main developments based on this setting.

Note that K-step instant pre-opacity requires that the in-
truder cannot predict K-step ahead that the system will visit a
secret state at some specific instant. This is also why we call it
“instant” pre-opacity. However, in some situations, the intruder
may just want to know whether or not the system will visit a
secret state in the future without the need of telling the specific
instant. For instance, for G2 in Figure 2(a), after observing a,
although the intruder cannot determine for sure the specific
instant when the secret state will be reached (the system will
visit a secret state in one step or in two steps), it can still tell
that the system will visit a secret state within the next two
steps and at least one step before the occurrence of the first
secret state. To capture this scenario, we propose the notion
of K-step trajectory pre-opacity.

Definition 3. (K-Step Trajectory Pre-Opacity) Given system
G, set of observable events Eo, set of secret states XS , and
non-negative integer K ∈ N, system G is said to be K-step
trajectory pre-opaque (w.r.t. Eo and XS) if

(∀x0 ∈ X0,∀s ∈ Lo(G, x0))(∀n ≥ K)

(∃x′0 ∈ X0,∃s′ ∈ Lo(G, x′0),∃t1t2 ∈ L(G, f(x′0, s
′)) s.t.

[P (s) = P (s′)] ∧ [|t1| = K] ∧ [|t1t2| = n]∧
[∀w∈{t2} : f(x′0, s

′t1w) /∈XS ]

Intuitively, K-step trajectory pre-opaque says that the in-
truder will never be able to determine K-step ahead for sure
that the system will visit a secret state. More specifically, if
a system is not K-step trajectory pre-opaque, then according
to Definition 3, it means that there exist a string s such that
any observation equivalent string s′ must pass through a secret
state after the next Kth instant. In other words, the intruder
can determine the system’s intention of visiting a secret state
more than K-step ahead. We use the following example to
illustrate this notion.

Example 3. Let us consider again G1 shown in Figure 2(a)
and we have shown in Example 2 that this system is 1-
step instant pre-opaque. However, it is not 1-step trajectory
pre-opaque. For example, let us consider ε ∈ Lo(G) and
n = 4 ≥ 1 = K. Note that ε itself is the only observation
equivalent string in Lo(G). However, any 4-step extension of
ε, either abca or uabc, will necessarily pass through a secret
state between the first instant and the forth instant. On the
other hand, this system is 3-step trajectory pre-opaque. This
is because the only instant to predict the visit of a secret
state 3-step ahead is when observing ε. However, with this
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observation, it is possible that the system will be at state 6,
from which no secret state will be visited, after three steps.
Therefore, the intruder can never determine 3-step ahead for
sure that a secret state will be visited.

Remark 2. Similar to the interpretations of current-state
opacity and K-step opacity, where the system is operating
against the current-state estimator and delay-state estimator,
respectively, here one can image that the system is operating
against an intruder working as a predictor (for its secret
intention). Roughly speaking, both K-step instant pre-opacity
and K-step trajectory pre-opacity require that the intruder can
never predict its secret K-steps ahead. However, the specific
prediction tasks of the “virtual predictor” in these two notions
are different: in instant pre-opacity, the predictor also needs to
identify the precise future instant at which the system will be
at a secret state, while in trajectory pre-opacity, the predictor
just needs to identify the inevitability of passing through a
secret state without specifying the visiting instant.

B. Properties of Pre-Opacity
Now, we discuss properties of the proposed notions of pre-

opacity and their relationships with other notions of opacity in
the literature. First, we show that, for any K, K-step instant
pre-opacity is weaker than K-step trajectory pre-opacity.

Proposition 1. If G is K-step trajectory pre-opaque, then it
is K-step instant pre-opaque.

Proof. This result follows directly from the definitions. If the
system is K-step trajectory pre-opaque, then by setting t in
Definition 2 as t1t2 in Definition 3, we know that the system
is K-step instant pre-opacity.

The intuition of the above result can also be interpreted
as follows. For the case of instant pre-opacity, the prediction
task of intruder is more challenging than that for the case of
trajectory opacity due to the need of determining the specific
secret instant. Therefore, from the system’s point of view, the
underlying security property becomes weaker.

Also, by definitions, we note that K-step instant pre-
opacity becomes weaker when K increases, i.e., K-step instant
pre-opacity always implies (K + 1)-step instant pre-opacity.
However, the following result shows that there is an upper
bound for K in instant pre-opacity, i.e., pre-opacity will not
keep getting strictly weaker when K increases.

To present our result, we introduce two necessary concepts.
First, for each state x ∈ X , the set of states that can be reached
from x in exactly K steps is define by

RK(x)={x′∈X : ∃s∈L(G, x) s.t. f(x, s)=x′ ∧ |s|=K}.
(4)

For a set of states q ⊆ X , we also define RK(q) :=⋃
x∈q RK(x) as the set of states that can be reached from

set q in exactly K steps.
Also, let α ∈ P (L(G)) be an observed string. Then the

current-state estimate upon the occurrence of α without the
unobservable tail is defined by

Ê(α)={f(x0, s)∈X : ∃x0∈X0, s∈Lo(G, x0) s.t. P (s)=α}.
(5)

Then we have the following the theorem showing the upper
bound of K in instant pre-opacity.

Theorem 1. For any K ′ > K ≥ 2|X| − 1, system G is K ′-
step instant pre-opaque, if and only if, G is K-step instant
pre-opaque.

Proof. It is trivial that K-step instant pre-opacity implies
K ′-step instant pre-opacity. Hereafter, we show that K ′-step
instant pre-opacity also implies K-step instant pre-opacity.
Without loss of generality, we assume that K ′ = K+1 as the
argument can be applied inductively.

Now we assume, for the sake of contradiction, that G is
not K-step instant pre-opaque but G is (K + 1)-step instant
pre-opaque, where K ≥ 2|X|−1. This implies that there exists
an initial state x0 ∈ X0 and a string s ∈ Lo(G, x0) such that

(∀x′0 ∈ X0)(∀s′ ∈ Lo(G, x′0), s′t ∈ L(G, x′0))

[P (s) = P (s′) ∧ |t| = K]⇒ [f(x′0, s
′t) ∈ XS ].

Equivalently, we have RK(Ê(P (s))) ⊆ XS . Since for any
i ∈ N, Ri(Ê(P (s))) is non-empty and it has at most |X|
elements, there are only (2|X| − 1) choices for Ri(Ê(P (s))).
Moreover, since the cardinality of multi-set {Rj(Ê(P (s))) :
j = 0, 1, · · · ,K} is K + 1 ≥ 2|X| > 2|X| − 1, we know
that there exist two integers 0 ≤ m < n ≤ K, such that
Rm(Ê(P (s))) = Rn(Ê(P (s))). Then we know that

RK+n−m(Ê(P (s))) = RK−m(Rn(Ê(P (s))))

= RK−m(Rm(Ê(P (s)))) = RK(Ê(P (s))) ⊆ XS (6)

i.e., for initial state x0 ∈ X0 and string s ∈ Lo(G, x0), we
also have that

(∀x′0 ∈ X0)(∀s′ ∈ Lo(G, x′0), s′t ∈ L(G, x′0))

[P (s) = P (s′) ∧ |t| = K + n−m]⇒ [f(x′0, s
′t) ∈ XS ].

Since K+n−m ≥ K+1, we know that (K+1)-step instant
pre-opacity is violated, which is a contradiction.

One may conjecture that 0-step instant pre-opacity is equiva-
lent to current-state opacity. However, it is not exactly the case.
For example, let us consider system G3 shown in Figure 4.
This system is current-state opaque as the intruder cannot
distinguish states 1 and 2 after observing a due to unobservable
event u. On the other hand, it is not 0-step instant pre-opaque
according to our definition since the intruder can predict one
step ahead for sure that the system will reach the secret state
when observing nothing. This difference is due to the fact that
we consider instant in terms of actual event steps rather than
the observation steps. The only conclusion we can draw is that
current-state opacity is weaker than 0-step instant pre-opacity,
which is stated as follows.

Proposition 2. If G is 0-step instant/trajectory pre-opaque,
then G is current-state opaque.

Proof. It suffices to show that 0-step instant pre-opacity im-
plies current-state opacity since 0-step trajectory pre-opacity
is stronger than 0-step instant pre-opacity. Suppose G is 0-
step instant pre-opaque. Let us consider arbitrary initial state
x0 ∈ X0 and string s ∈ L(G, x0). Note that for string s, we
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can always find ŝ ∈ Lo(G, x0), by removing the unobservable
tail (if any) of s such that P (s) = P (ŝ). Since G is 0-step
instant pre-opaque, by setting n in Definition 2 as n = 0, we
know that there exist x′0 ∈ X0 and s′ ∈ Lo(G, x′0)) such that
P (s′) = P (ŝ) = P (s) and f(x′0, s

′) /∈ XS . This means that
the system is current-state opaque.

Based on the above discussion, we summarize the relation-
ships among the proposed notions of pre-opacity and existing
notions of opacity in Figure 3.

Remark 3. Finally, we note that the proposed concept of pre-
opacity is also related to the notion of fault predictability
or fault prognosability in the literature [41]–[43], which
captures whether or not a fault event can always be predicted
unambiguously a certain number of steps ahead before it
actually occurs. Conceptually, by considering the visit of secret
states as fault, trajectory pre-opacity can be viewed as a dual
problem of predictability. However, trajectory pre-opacity is
not exactly non-predictability. The former requires that all
secret paths cannot be predicted, while the latter says some
fault path cannot be predicted. Furthermore, our notion of
instant opacity is quite different from predictability as we need
to determine the specific instant of being secret; this issue does
not occur in predictability analysis.

IV. VERIFICATION OF PRE-OPACITY

In this section, we show how to verify the proposed notions
of pre-opacity. Specifically, we present two state-based neces-
sary and sufficient conditions for K-step instant pre-opacity
and K-step trajectory pre-opacity, respectively, that can be
checked using the observer structure. Then we discuss the
complexity of the verification problems.

A. Necessary and Sufficient Condition for Instant Pre-Opacity

Recall that a system is not K-step instant pre-opaque if
after some observation, each possible state (immediately after

the observation) will visit a secret state in exactly n steps for
some n ≥ K. This suggests that K-step instant pre-opacity can
be checked by combining the current-state estimation together
with the reachability analysis. To this end, we further introduce
some necessary notions.

We say that a state x ∈ X is a K-step indicator state if it
will reach a secret state inevitably in exactly K steps, i.e.,

RK(x) ⊆ XS .

For any K ∈ N, we define

=K := {x ∈ X : RK(x) ⊆ XS} ⊆ X

as the set of K-step indicator states.
Then the following theorem shows that K-step instant pre-

opacity can be simply characterized in terms of current-state
estimate and K-step indicator states.

Theorem 2. System G is K-step instant pre-opaque if and
only if

∀α ∈ P (L(G)),∀n ≥ K : Ê(α) 6⊆ =n.

Proof. (⇒) By contraposition. Suppose that there exists a
string α ∈ P (L(G)) and an integer n ≥ K such that Ê(α) ⊆
=n. Let us consider an initial state x0 ∈ X0 and a string
s ∈ Lo(G, x0) such that P (s) = α. Since Ê(α) ⊆ =n, for
any initial state x′0 ∈ X0 and string s′ ∈ Lo(G, x0) such that
P (s′) = α, we have f(x′0, s

′) ∈ =n, i.e., Rn(f(x′0, s
′)) ⊆ XS

This means that for for any t ∈ L(G, f(x′0, s
′)) and |t| = n,

we have f(x′0, s
′t) ∈ XS . This means that system G is not

K-step instant pre-opaque.
(⇐) Still by contraposition. Suppose that G is not K-step

instant pre-opaque, which means that there exists an initial
state x0 ∈ X0, a string s ∈ Lo(G, x0) and an integer n ≥ K
such that

(∀x′0 ∈ X0)(∀s′ ∈ Lo(G, x′0), s′t ∈ L(G, x′0))

[P (s) = P (s′) ∧ |t| = n⇒ f(x′0, s
′t) ∈ XS ]

Then let α = P (s). Clearly, we have Rn(Ê(α)) ⊆ XS , i.e.,
Ê(α) ⊆ =n. This violates the condition in the theorem.

Theorem 2 essentially provides a state-based characteriza-
tion of the language-based definition of K-step instant pre-
opacity. However, it still cannot be directly used for the
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verification of instant pre-opacity. The main issue is that we
need to check whether or not Ê(α) 6⊆ =n for any n ≥ K,
which has infinite number of instants. The following result
further generalizes Theorem 2 and shows that it suffices to
check Ê(α) 6⊆ =n for a bounded number of instants.

Proposition 3. For any α ∈ P (L(G)), the following two
statements are equivalent:

(i) ∀n ≥ K : Ê(α) 6⊆ =n;
(ii) ∀n ∈ {K,K + 1, . . . ,K + 2|X| − 1} : Ê(α) 6⊆ =n.

Proof. (i)⇒(ii) is trivial. Hereafter, we show that (ii)⇒(i).
Let q := Ê(α) and we consider the reachable set
of q for each instant between K and K + 2|X| − 1,
i.e., RK(q), RK+1(q), . . . , RK+2|X|−1(q). For any n ∈
{K, . . . ,K + 2|X| − 1}, since q 6⊆ =n, we know that there
exists x ∈ q such that x /∈ =n, i.e., Rn(x) 6⊆ XS . Since
Rn(q) =

⋃
x∈q Rn(x), we know that Rn(q) 6⊆ XS for any

n ∈ {K, . . . ,K + 2|X| − 1}.
Now we note that set {Ri(q) : K ≤ i ≤ K+2|X|−1} ⊆ 2X

is non-empty, so it contains at most 2|X| elements. Therefore,
there must exist two instants K ≤ i < j ≤ K + 2|X|− 1 such
that Ri(q) = Rj(q). Furthermore, by the definition of K-step
reachable set, we have

Rn+k(q) = Rn(Rk(q)) = Rk(Rn(q))

Then for any instant n′ > K + 2|X|− 1, we can always write
it in the form of

n′ = i+ (j − i)× k +m

where 1 ≤ k, 0 ≤ m < (j − i) are two integers. Furthermore,
since Ri(q) = Rj(q), we have Ri(q) = Ri+(j−i)×k(q) for
any k ≥ 0, so

Rn′(q) = Rm(Ri+(j−i)×k(q)) = Rm+i(q).

However, since m < j − i, we have m+ i < j. Therefore,

∀n′ > K + 2|X| − 1 : Rn′(q) = Rm+i(q) 6⊆ XS .

This further implies that

∀n′ > K + 2|X| − 1 : q 6⊆ =n′ ,

which completes the proof.

One may ask why we need to search for the entire next
2|X| instants to obtain the upper bound in Proposition 3.
However, this upper bound seems to be unavoidable. To see
this, let us consider the system shown in Figure 5, where all
events are unobservable and red states denote secret states.
This system is not K-step instant pre-opaque for any K since
one can determine for sure (by observing nothing) that the
system will be at a secret state for instants k ·30, k = 1, 2 . . . ,
where 30 is the least common multiple of cycle lengths 2, 3
and 5. Therefore, the first violation of Ê(α) 6⊆ =n occurs at
n = 30. Similarly, one could add more states to create more
such cycles and the upper bound for searching =n will grow
exponentially. However, this exponentially searching bound is
only needed when the system contains unobservable events.
In the following result, we show that such an upper bounded
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Fig. 5. A system where all events are unobservable and red states denote
secret states.

search can be avoided for the extreme case when there is no
unobservable event in the system.

Proposition 4. Under the assumption that all events in G are
observable, then G is K-step instant pre-opaque if and only
if

∀α ∈ P (L(G)) : Ê(α) 6⊆ =K .

Proof. The necessity follows directly from Theorem 2. To
show the sufficiency, suppose that ∀α ∈ P (L(G)) : Ê(α) 6⊆
=K and assume that G is not K-step instant pre-opaque. Then
by Theorem 2, we know that there exist α ∈ P (L(G)) and
n > K such that Ê(α) ⊆ =n. In other words, we have that

(∀x0 ∈ X0)(∀s ∈ Lo(G, x0), st ∈ L(G, x0))

[P (s) = α ∧ |t| = n]⇒ [f(x0, st) ∈ XS ]

For any t satisfying above condition, we let t = t1t2,
where |t1| = n − K and |t2| = K. Then we know that
RK(Ê(P (st1))) ⊆ XS , i.e., Ê(P (st1)) ⊆ =K , which is a
contradiction.

B. Necessary and Sufficient Condition for Trajectory Pre-
Opacity

Now we discuss the case of K-step trajectory pre-opacity.
First, we say that a state x ∈ X is a non-indicator state if
there exists an infinitely long string defined from this state
along which no secret state is visited. Formally, we define the
set of non-indicator states by

N :=

{
x ∈ X :

(∀n ≥ 0)(∃s ∈ L(G, x) : |s| > n)

(∀t ∈ {s})[f(x, t) 6∈ XS ]

}
(7)

Since the number of states in G is finite, a state is a non-
indicator state if and only it can reach a cycle, in which all
states are non-secret, via a sequence of non-secret states. In
other words, if a state is not in N , then it is an indicator state
in the sense that a secret state will be visited inevitably from
this state.

Remark 4. Note that a state is not a non-indicator state
does not necessarily imply that it is a K-step indicator state
for some K since the latter requires the system to be at a
secret state for some specific instant while the former does not
require this information. Furthermore, a state is an indicator
state does not imply that any state reachable from this state
is an indicator state. This is because after passing through
a secret state, the status of indicating may become non-
indicating.
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Therefore, if the system is at a state whose K-step reachable
set is a subset of indicator state, then based on this state
information, one can predict K-step ahead that a secret state
will be visited. We define

NK := {x ∈ X : RK(x) ∩N 6= ∅} ⊆ X

as the set of states the intruder cannot make such a prediction.
Then we have the following theorem.

Theorem 3. System G is K-step trajectory pre-opaque if and
only if

∀α ∈ P (L(G)) : Ê(α) ∩NK 6= ∅.

Proof. (⇒) By contradiction. Suppose that G is K-step
trajectory pre-opaque and assume that there exists a string
α ∈ P (L(G)) such that Ê(α) ∩ NK = ∅ holds. According to
Definition 3, for any n ≥ K, there exists x′0 ∈ X0, s

′ ∈
Lo(G, x′0), s′t1t2 ∈ L(G, x′0) such that P (s′) = P (s) =
α, |t1| = K, |t2| = n − K and for any w ∈ {t2}, we
have f(x′0, s

′t1w) 6∈ XS . Now, let us choose n such that
n ≥ |X| + K, i.e., |t2| ≥ |X|. Since f(x′0, s

′t1t2) can pass
through at most |X| states, there are at least two repeated
states that forms a cycle along the path of t2 starting from
f(x′0, s

′t1). This immediately implies that f(x′0, s
′t1) ∈ N .

Furthermore, we have f(x′0, s
′t1) ∈ RK(f(x′0, s

′)) since
|t1| = K. Therefore, we have RK(f(x′0, s

′)) ∩ N 6= ∅, i.e.,
f(x′0, s

′) ∈ NK . Since P (s′) = α and s′ ∈ E∗Eo ∪ {ε}, we
have f(x′0, s

′) ∈ Ê(α), which implies that Ê(α) ∩ NK 6= ∅.
This, however, contradicts to our assumption.

(⇐) By contradiction. Suppose that for any α ∈ P (L(G)),
we have Ê(α) ∩ NK 6= ∅ and assume that G is not K-step
trajectory pre-opaque, i.e., there exist a state x0 ∈ X0, a string
s ∈ Lo(G, x0) and an integer n ≥ K such that

(∀x′0 ∈ X0)(∀s′ ∈ Lo(G, x′0),∀t1t2 ∈ L(G, f(x′0, s
′)) s.t.

[P (s) = P (s′) ∧ |t1| = K ∧ [|t1t2| = n]

⇒ [∃w∈{t2} : f(x′0, s
′t1w)∈XS ] (8)

Let us consider an arbitrary state x in Ê(P (s)). This means
that there exist a state x′0 ∈ X0 and a string s′ ∈ Lo(G, x′0)
such that f(x′0, s

′) = x and P (s′) = P (s). However,
according to Equation (8), any string of length n from state x
must pass through a secret state between its Kth instant and its
nth instant. This means that RK(x) ∩ N = ∅, i.e., x /∈ NK .
Note that x is an arbitrary state in Ê(P (s)). Therefore, we
have Ê(P (s)) ∩ NK = ∅. However, this contradicts to our
assumption that Ê(α) ∩NK 6= ∅ for any α ∈ P (L(G)).

Similar to the case instant pre-opacity, there also exists an
upper bound for K in trajectory pre-opacity.

Proposition 5. For any K ′ > K ≥ 2|X| − 1, system G is
K ′-step trajectory pre-opaque, if and only if, G is K-step
trajectory pre-opaque.

Proof. Still, it suffices to show that K ′-step trajectory pre-
opacity implies K-step trajectory pre-opacity. For the sake
of contradiction, assume that G is not K-step trajectory pre-
opaque but is (K + 1)-step trajectory pre-opaque, where
K ≥ 2|X| − 1. According to Theorem 3, we know that

• ∀α ∈ P (L(G)) : Ê(α) ∩NK+1 6= ∅; and
• ∃β ∈ P (L(G)) : Ê(β) ∩NK = ∅.

The above two conditions further imply that RK(Ê(β))∩N =
∅ and RK+1(Ê(β)) ∩ N 6= ∅. In addition, since for any
i ∈ N, Ri(Ê(β)) has at most |X| elements and at least one
element, there are (2|X| − 1) choices for Ri(Ê(β)). Note that
the cardinality of multi-set {Rj(Ê(β)) : j = 0, 1, · · · ,K} is
K + 1 ≥ 2|X| > 2|X| − 1, which means that there exist two
integers 0 ≤ m < n ≤ K, such that Rm(Ê(β)) = Rn(Ê(β)).
Then RK+1+m−n(Ê(β)) ∩ N = RK+1(Ê(β)) ∩ N 6= ∅.
Assume that x ∈ RK+1+m−n(Ê(β)) ∩ N , according to the
definition of N , we have that Rn−m−1({x}) ∩N 6= ∅. Since
Rn−m−1({x}) ⊆ Rn−m−1(RK+1+m−n(Ê(β))), we know
that Rn−m−1(RK+1+m−n(Ê(β))) ∩N 6= ∅. Therefore,

RK(Ê(β)) ∩N = Rn−m−1(RK+1+m−n(Ê(β))) ∩N 6= ∅,

which forms a contradiction. This ends the proof.

C. Verification Algorithms
Now, let us discuss how to use the derived necessary and

sufficient conditions to verify K-step instant or trajectory pre-
opacity. To this end, we need to compute
• All possible state estimates, i.e., {Ê(α) : α ∈ P (L(G))};
• A set of n-step indicator states for K ≤ n ≤ K+2|X|−1,

i.e., {=K , . . . ,=K+2|X|−1} (for instant pre-opacity);
• The set of states whose K-step reachable set contains at

least a non-indicator state, i.e., NK (for trajectory pre-
opacity).

1) Computation of Ê(α): Note that, compared with the
standard current-state estimate, the state estimate considered
here does not contain the unobservable tail. This can be
computed by a slightly modified version of the standard
observer automaton (we still call it observer here for the sake
of simplicity). Formally, the observer of G is a new FSA

Obs(G) = (Qobs, Eo, fobs, qobs,0),

where Qobs ⊆ 2X\∅ is the set of states, Eo is the set of events,
qobs,0 = X0 is the initial state, and fobs : Qobs × Eo → Qobs

is the deterministic transition function defined by: for any q ∈
Qobs, σ ∈ Eo, we have

fobs(q, σ) = {x∈X : ∃x′∈q, w∈E∗uo s.t. f(x′, wσ) = x}
(9)

For the sake of simplicity, we only consider the reachable part
of the observer. Then we have

∀α ∈ P (L(G)) : f(qobs,0, α) = Ê(α).

Therefore, all possible state estimate Ê(α) can be computed
with complexity O(|Eo|2|X|).

2) Computation of =n: For any give n ≥ 0, one can
compute =n by backtracking n steps from the set of all secret
states. Formally, one can define an operator F : 2X → 2X by:
for any q ∈ 2X , we have

F (q) = {x ∈ X : ∀σ ∈ E, f(x, σ)! s.t. f(x, σ) ∈ q}. (10)

Then one can easily check that

=n = Fn(=0) with =0 = XS

which can be computed with complexity O(n|Eo||X|).
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3) Computation of NK: To compute NK , first we need to
compute the set of non-indicator states N . To this end, we
can remove all secret states in G and compute all strongly
connected components, i.e., cycles; this can be done by, e.g.,
Kosaraju’s algorithm with a linear complexity in the size of
G [47]. Then those states that can reach a non-secret cycle
are the set of non-indicator states. Therefore, computing set
N can be done in O(|E||X|). In order to compute NK , one
can backtrack from N using another operator W : 2X → 2X

defined by: for any q ∈ 2X , we have

W (q) = {x ∈ X : ∃σ ∈ E s.t. f(x, σ) ∈ q}. (11)

Then one can easily check that

NK = WK(N0) with N0 = N

which can be computed with complexity O(K|Eo||X|).
Therefore, the overall complexity for computing set NK is
O(K|Eo||X|).

Based on the above discussions, we summarize the algo-
rithms for the verification of K-step instant pre-opacity and K-
step trajectory pre-opacity by Algorithm INS-PRE-OPA-VER
and Algorithm TRAJ-PRE-OPA-VER, respectively. The com-
plexity of Algorithm INS-PRE-OPA-VER is O(|Eo|2|X|[K +
(K + 1) + · · ·+ (K + 2|X|− 1)]|Eo||X|) = O(|Eo|2|X|(K +
2|X|−1)22|X|) for the general case and is O(K|Eo|2|X|2|X|)
under the assumption that there is no unobservable event.
The complexity of Algorithm TRAJ-PRE-OPA-VER is sim-
ply O(K|Eo|2|X|2|X|), which is dominated by the size of
the observer. We illustrate the verification algorithms by the
following examples.

Algorithm 1: INS-PRE-OPA-VER

input : System G with XS , Eo and K
output: YES or NO

1 Construct the observer obs(G);
2 if there is no unobservable event in G then
3 M ← 0;
4 else
5 M ← 2|X| − 1;
6 end
7 for q ∈ Qobs do
8 for n ∈ {K,K + 1, . . . ,K +M} do
9 if q ⊆ =n then

10 return NO;
11 end
12 end
13 end
14 return YES;

Example 4. Let us consider again system G1 shown in
Figure 2(a) and we verify whether or not it is K-step trajectory
pre-opaque. First, we build its observer Obs(G1) as shown in
Figure 6(a). The only non-indicator state is 6, i.e., N = {6}.
For K = 2, we have N2 = W 2({6}) = {2, 4, 5, 6, 7}.
Since {0} ∩ {2, 4, 5, 6, 7} = ∅, we know that G1 is not 2-
step trajectory pre-opaque. However, for K = 3, we have

Algorithm 2: TRAJ-PRE-OPA-VER

input : System G with XS , Eo and K
output: YES or NO

1 Construct the observer obs(G);
2 for q ∈ Qobs do
3 if q ∩NK = ∅ then
4 return NO;
5 end
6 end
7 return YES;20 1
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Fig. 6. Observers for G1 and G2, respectively.

N3 = W 3({6}) = {0, 2, 3, 4, 5, 6, 7} and each observer state
has a common element with N3. Therefore, G1 is 3-step
trajectory pre-opaque. These results are also consistent with
our previous intuitive analysis.

However, this system is K-step instant pre-opaque for any
K ≥ 0. To see this, it suffices to consider the case of K = 0.
In this case, we have

=0 = {4, 7},=1 = {2, 5},=2 = {3},=3 = {1},
=4 = =5 = · · · = ∅

Therefore, no observer state is a subset of any =i, which
implies 0-step instant pre-opacity.

Example 5. For system G2 shown in Figure 2(b), its observer
is shown in Figure 6(a). Then we have

=0 = {4, 7},=1 = {2, 5},=2 = {3},=3 = =4 = · · · = ∅

However, for observer state {2, 5}, we have {2, 5} ⊆ =1,
which means that G2 is not 1-step instant pre-opaque. On the
other hand, G2 is K-step instant pre-opaque for any K ≥ 2
as no state in Obs(G2) is a subset of any =n, n ≥ 2.

D. The Complexity of K-Step Pre-Opacity

Note that the complexity of Algorithm INS-PRE-OPA-VER
and Algorithm TRAJ-PRE-OPA-VER are both exponential in
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the number of states in G. Next, we show that both proper-
ties are essentially PSPACE-hard; therefore, the exponential
complexity seems to be unavoidable.

Theorem 4. Deciding whether or not G is K-step instant
(or trajectory) pre-opaque is PSPACE-hard even when G is
deterministic.

Proof. Given two non-deterministic automata (NFAs) G1 =
(X1, E, f1, X1,0) and G2 = (X2, E, f2, X2,0), the problem of
language containment asks to decide whether or not L(G1) ⊆
L(G2). This problem is known to be PSPACE-hard. Hereafter,
we show that checking K-step instant/trajectory pre-opacity
is also PSPACE-hard by reducing the language containment
problem to the pre-opacity verification problem.

Let G1 = (X1, E, f1, X1,0) and G2 = (X2, E, f2, X2,0)
be two NFAs with initial states X1,0 and X2,0, respectively.
Without loss of generality, we assume G1 and G2 are live;
otherwise, we can add a self-loop with a new event at each
state in G1 and G2. Note that, in the analysis of pre-opacity,
we assume that the transition function is deterministic; this
gap can be bridged by using unobservable events to mimic
non-determinism. Formally, let Eu = {u1, u2, . . . , uk} be a
set of new unobservable events. Then for each NFA Gi, we
construct a new FSA G̃i = (X̃i, Ẽ, f̃i, X̃i,0) by: X̃i = Xi ∪
{(x, σ) ∈ Xi × E : fi(x, σ)!}, Ẽ = E ∪ Eu, Xi,0 = X̃i,0,
and f̃i : X̃i × Ẽ → X̃i is the deterministic transition function
defined by: for any fi(x, σ)!, we have f̃i(x, σ) = (x, σ) and
fi(x, σ) = {f̃i((x, σ), u) : u ∈ Eu}. The construction of G̃i

is illustrated by Figure 7. Clearly, one has L(G1) ⊆ L(G2)
iff P (L(G̃1)) ⊆ P (L(G̃2)).

Now we construct a new FSA G̃ = (X̃, Ẽ, f̃ , X̃0) by taking
the union of G̃1 and G̃2, i.e., X̃ = X̃1 ∪ X̃2, f̃ is consistent
with f̃1 and f̃2, and X̃0 = X̃1,0 ∪ X̃2,0. Then, for system G̃,
we let XS = X1 and Eu be the set of unobservable events.
We show that G̃ is 0-step instant (or trajectory) pre-opaque if
and only if L(G1) ⊆ L(G2).

(⇒) To see this, we suppose that L(G1) 6⊆ L(G2), then we
know that there exists a string s ∈ L(G1) \ L(G2), i.e., there
exists a string t ∈ P (L(G̃1)) \ P (L(G̃2)), since L(G1) ⊆
L(G2) is equivalent to P (L(G̃1)) ⊆ P (L(G̃2)). Therefore,
after observing t in G̃, since XS = X1, we know for sure
that the system now is at a secret state and will be at secret
states for any future instant. Hence, G̃ is not 0-step instant (or
trajectory) pre-opaque.

(⇐) Suppose that L(G1) ⊆ L(G2) and we assume that,
for the sake of contradiction, G̃ is not 0-step trajectory pre-
opaque, which means it is also not 0-step instant pre-opaque.
Then we know that there exists a string s ∈ P (L(G̃)) such that
Ê(s) ∩ N0 = ∅. Note that we have P (L(G̃1)) ⊆ P (L(G̃2)).
Since L(G1) ⊆ L(G2), this also implies that P (L(G̃)) =
P (L(G̃2)) and s ∈ P (L(G̃2)). However, since every state in
G̃2 is non-secret and G̃2 is live, we have X̃2 ⊆ N0. Therefore,
it is not possible that Ê(s)∩N0 = ∅, which is a contradiction.

Overall, we conclude that deciding whether or not G is K-
step instant/trajectory pre-opacity is PSPACE-hard.
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Fig. 7. Conceptual illustration of how to construct G̃i from Gi

.

V. SECRET INTENTION AS A SEQUENCE PATTERN

In the previous sections, the secret intention of the system
is interpreted as reaching some secret states. In this section,
we further generalize this setting by considering the secret
intention as the willing to execute some particular sequences
of events, which we call a sequence pattern. We present an
illustrative example that motivates the definition of pattern pre-
opacity and show how it can be reduced to state-based pre-
opacity.

A. Illustrative Example of Pattern Pre-Opacity

We consider a location-tracking/prediction type problem
in a smart factory building equipped with sensors as shown
in Figure 8(a). The factory has eight regions of interest: a
warehouse, a logistics, a finance office, a canteen, a corridor
and three workshops. We assume there is a person in the
factory that can move from one region to another by passing
through a door; some doors are one-way and some are two-
way as depicted in the figure. In particular, there are two
doors DB1 and DB2 secured by door barrier sensors, which
allow to observe if a person crosses the door but cannot tell
the direction. Furthermore, there are two additional motion
detector sensors (MD1 and MD2) at corridor and logistics,
respectively; they can detect if a person moves to the corridor
(or logistics) and specify the direction of the movement. The
building monitor is able to use these sensors to track and
predict the behavior of the person.

According to the structure of factory and different types of
doors, the overall system, which is the mobility of the person,
can be modeled as a DES as shown in Figure 8(b), where
states 0 to 8 represent, respectively, regions outside, ware-
house, corridor, logistics, finance office, canteen, workshop
1, workshop 2 and workshop 3. Based on the distribution of
motion detector sensors and door barrier sensors, we know
that the set of observable events is

Eo = {α1, α2, α3, α4, α5, α6, α7, α8, α9, α10}.

Now we assume that the person wants to move in the
factory to complete two tasks “secretly”: (task 1) first goes
to warehouse and then goes to workshop 1; (task 2) first goes
to warehouse, and then enters workshop 2, and finally gets to
workshop 3. Furthermore, the person wants to hide its intention
for executing the above sequences against the monitor before
they are completed. In this setting, “secret intention” is no
longer visiting a secret state in the future. Instead, completing
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Fig. 8. An illustrative case of pattern pre-opacity.

any sequence containing string α1β2 or α1α6β3 can be viewed
as a secret behavior. One can check that the person may not
be able to hide its intention to complete task 2 more than
one step before its completion. This is because once motion
detector sensor DB2 is triggered, the building monitor can
determine for sure that the person was from warehouse, and
is currently at workshop 2 and will go to workshop 3 in one
step to complete the task. To formally describe this scenario,
we propose K-step instant/trajectory pattern pre-opacity in the
next part.

B. Definitions of Pattern Pre-Opacity

Now, we formally formulate the notion of pattern pre-
opacity. Specifically, we consider a regular pattern language
Ω ⊆ E∗ which is the set of all strings containing the secret
sequence patterns of the system. Then we say that a system is
K-step pattern pre-opaque if any completion of a string in the
pattern language can be predicted K-step ahead. Depending
on whether or not the intruder needs to determine the specific
instant of the completion, pattern pre-opacity can also be
categorized as instant pre-opacity and trajectory pre-opacity.

Definition 4. (K-Step Instant Pattern Pre-Opacity) Given
system G, set of observable events Eo, pattern language Ω,
and non-negative integer K ∈ N, system G is said to be K-
step instant pattern pre-opaque (w.r.t. Eo and Ω) if

(∀x0 ∈ X0)(∀s ∈ Lo(G, x0))(∀n ≥ K)

(∃x′0 ∈ X0)(∃s′ ∈ Lo(G, x′0), t ∈ L(G, f(x′0, s
′)) (12)

[P (s) = P (s′) ∧ |t| = n ∧ s′t /∈ Ω]

Definition 5. (K-Step Trajectory Pattern Pre-Opacity) Given
system G, set of observable events Eo, a pattern language
Ω, and non-negative integer K ∈ N, system G is said to be
K-step trajectory pattern pre-opaque (w.r.t. Eo and Ω) if

(∀x0 ∈ X0,∀s ∈ Lo(G, x0))(∀n ≥ K)

(∃x′0 ∈ X0,∃s′ ∈ Lo(G, x′0),∃t1t2 ∈ L(G, f(x′0, s
′)) s.t.

[P (s) = P (s′)] ∧ [|t1| = K] ∧ [|t1t2| = n]∧
[∀w∈{t2} : s′t1w /∈ Ω]

Intuitively, K-step trajectory pattern pre-opacity says that,
for any observation, the intruder cannot predict K-step ahead
that a secret sequence pattern will be completed. The definition
of instant pattern pre-opacity is similar; the only difference
is that it also requires to specify the specific instant of the
completion. Clearly, pre-opacity is a special case of pattern
pre-opacity as we can define all sequences reaching secret
states as the sequence pattern. Hereafter, we will show that
pattern pre-opacity can also be transformed to standard pre-
opacity by refining the state-space and suitably defining secret
states.

Example 6. Consider again the example shown in Figure 8(b).
The pattern language can be described by

Ω =((E\{α1})∗{α1}(E\{α6})∗{α6}(E\{β3})∗{β3}
∪ (E\{α1})∗{α1}(E\{β2})∗{β2})∗ (13)

Essentially, regular pattern language Ω includes all strings
that contain sequence pattern α1α6β3 or α1β2. This language
can be marked by FSA GΩ shown in Figure 8(c). Obviously,
G3 is 2-step instant pattern pre-opaque, since based on any
observation, the intruder cannot know for sure the system
will finish a sequence pattern α1β2 or α1α6β3 2-step ahead.
However, as we discussed early, it is not 1-step instant pattern
pre-opaque; this is because, once string α1α6 is observed,
the monitor knows for sure that sequence pattern α1α6β3 will
be completed in 1-step. Also, we can check that G3 is 2-step
trajectory pattern pre-opaque but not 1-step trajectory pattern
pre-opaque.

Note that when string α1α6 is observed, we know that se-
quence pattern α1β2 has been finished one step ago. Although
the monitor fails to detect sequence pattern α1β2 before its
completion, it still can predict sequence pattern α1α6β3.

Remark 5. The concept of sequence pattern was first pro-
posed in the literature for the purpose of fault diagnosis
[48] and fault prognosis [41]. Specifically, a sequence pattern
is used to model the set of behaviors considered as fault.
Our notion of sequence pattern is more general than that in
the context of fault diagnosis/prognosis. In particular, in the
context of fault diagnosis/prognosis, the sequence pattern is
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assumed to be stable in the sense that any continuation of a
sequence in the pattern is still in the pattern. This is motivated
by the setting of permanent fault. However, our definition of
sequence pattern does not necessarily be stable as the system
can be secret/non-secret intermittently. In other words, even if
the intruder miss the predication of the first sequence pattern,
it may still be able to predict some future sequence pattern,
and in this case, the system is also not pre-opaque.

C. Verifications of Pattern Pre-Opacity

We show how to verify pattern pre-opacity in this part.
To this end, we assume that the secret pattern language
Ω is a regular language and it is recognized by a FSA
GΩ = (XΩ, E, fΩ, x0,Ω, Xm,Ω), i.e., Lm(GΩ) = Ω, where
x0,Ω is the unique initial state. Without loss of generality, we
assume that GΩ is total, i.e., L(GΩ) = E∗; otherwise, we can
add a new unmarked “dump” state and complete the transition
function.

Then let G = (X,E, f,X0) be the system and GΩ =
(XΩ, E, fΩ, x0,Ω, Xm,Ω) be the FSA recognizing the sequence
pattern. We define the product of G and GΩ as

G× = (X ′, E′, f ′, X ′0),

where X ′ ⊆ X × XΩ, E
′ = E,X ′0 = X0 × {x0,Ω} and

f ′ : X ′ × E → X ′ is the transition function defined
by f((x1, x2), σ) = (f(x1, σ), fΩ(x2, σ)), if f(x1, σ) and
fΩ(x2, σ) are defined, and undefined otherwise. Then we
define

X ′S = {(q1, q2) : q2 ∈ Xm,Ω}

as the set of secret states in G×. Then the following result
shows that pattern pre-opacity can be transformed to state-
based pre-opacity.

Theorem 5. System G is K-step instant (respectively, trajec-
tory) pattern pre-opaque w.r.t. Ω if and only if G × GΩ is
K-step instant (respectively, trajectory) pre-opaque w.r.t. X ′S .

Proof. We only show the case of instant pre-opacity; the case
of trajectory pre-opacity is similar.

(⇒) Suppose that G×GΩ is not K-step instant pre-opaque,
which implies that

(∃(x0, x0,Ω) ∈ X ′0)(∃s ∈ Lo(G×GΩ, (x0, x0,Ω)))(∃n0 ≥ K)

(∀(x′0, x′0,Ω) ∈ X ′0)

(∀s′ ∈ Lo(G×GΩ, (x
′
0, x
′
0,Ω)), s′t ∈ L(G×GΩ, (x

′
0, x
′
0,Ω)))

[P (s) = P (s′) ∧ |t| = n0]⇒ [f ′((x′0, x
′
0,Ω), s′t) ∈ X ′S ]

Since GΩ is complete, we have L(G) ⊆ L(GΩ), then we know
that for any x′0 ∈ X0, any s′ ∈ Lo(G, x′0), s′t ∈ L(G, x′0)
such that P (s) = P (s′) and |t| = n0 ≥ K, we have that
fΩ(x′0, s

′t) ∈ Xm,Ω, i.e., s′t ∈ Lm(GΩ) = Ω. This implies
that G is not K-step instant pattern pre-opaque

(⇐) Assume that G is not K-step instant pattern pre-
opaque, i.e.,

(∃x0 ∈ X0)(∃s ∈ Lo(G, x0))(∃n0 ≥ K)

(∀x′0 ∈ X0)(∀s′ ∈ Lo(G, x′0), s′t ∈ L(G, x′0))

[P (s) = P (s′) ∧ |t| = n0 ∧ s′t ∈ Ω]

Since L(G×GΩ) ⊆ L(G), we know that for any (x′0, x0,Ω) ∈
X ′0, s

′ ∈ Lo(G × GΩ, (x
′
0, x0,Ω)) and s′t ∈ L(G ×

GΩ, (x
′
0, x0,Ω)) such that P (s′) = P (s) and |t| = n0, we al-

ways have f ′((x′0, x
′
0,Ω), s′t) ∈ X ′S and |t| = n0 ≥ K, which

means that G×GΩ is not K-step instant pre-opaque.

Example 7. Consider again system automaton G3 and pat-
tern automaton GΩ in Figure 8. To verify the K-step in-
stant/trajectory pattern pre-opacity of G3, we fist construct
G3×GΩ, which is omitted here for the sake of brevity. Then the
set of secret states in G3×GΩ is X ′S = {(6, F ), (8, H)}. One
can verify that G3×GΩ is 2-step instant pre-opaque but not 1-
step instant pre-opaque; also, G3×GΩ is 2-step trajectory pre-
opaque but not 1-step trajectory pre-opaque. Therefore, based
on Theorem 5, for sequence patterns captured by Ω, we know
that G3 is 2-step instant pattern pre-opaque but not 1-step
instant pattern pre-opaque, and it is 2-step trajectory pattern
pre-opaque but not 1-step trajectory pattern pre-opaque, which
are consistent with our previous analysis.

VI. CONCLUSION

In this paper, we proposed the notion of pre-opacity to
verify the intention security of a partially-observed DES. Two
notions of pre-opacity called K-step instant pre-opacity and
K-step trajectory pre-opacity are proposed. For each notion of
pre-opacity, we provide a verifiable necessary and sufficient
condition as well as an effective verification algorithm. We
also generalize the notions of pre-opacity to the case where
the secret behavior is captured by a sequence pattern. Our
work extends the theory of opacity to a new class where secret
is related to the intention of the system. We believe there are
many interesting future directions related to the concept of pre-
opacity. One interesting direction is to synthesize a supervisor
to enforce pre-opacity when the verification result is negative.
Also, we would like to extend the notion of pre-opacity to
the stochastic setting to quantitatively evaluate the information
leakage.
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