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Abstract—Learning-based controllers, such as neu-
ral network (NN) controllers, can show high empirical
performance but lack formal safety guarantees. To address
this issue, control barrier functions (CBFs) have been
applied as a safety filter to monitor and modify the out-
puts of learning-based controllers in order to guaran-
tee the safety of the closed-loop system. However, such
modification can be myopic with unpredictable long-term
effects. In this letter, we propose a safe-by-construction NN
controller which employs differentiable CBF-based safety
layers and relies on a set-theoretic parameterization. We
compare the performance and computational complexity
of the proposed controller and an alternative projection-
based safe NN controller in learning-based control. Both
methods demonstrate improved closed-loop performance
over using CBF as a separate safety filter in numerical
experiments.

Index Terms—Safety-critical control, control barrier func-
tions, neural network controller, safe learning control.

I. INTRODUCTION

LEARNING-BASED control has become increasingly
popular for controlling complex dynamical systems [1]

since it requires little expert knowledge and can be car-
ried out in an automatic, data-driven manner. However, due
to the black-box nature of learning models, learning-based
controllers such as neural network (NN) controllers lack for-
mal guarantees which significantly limits their deployment in
safety-critical applications.

The integration of control-theoretical approaches and
machine learning has provided a promising solution to safe
learning control, where trainable machine learning modules are
embedded into a control framework that guarantees the safety
or stability of the dynamical system [2], [3]. Of wide applica-
bility is the control barrier function (CBF) framework [4], [5]
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which explicitly specifies a safe control set and guards the
system inside a safe invariant set. This is achieved by con-
structing a CBF-based safety filter that projects any reference
control input (possibly generated by a NN controller) onto the
safe control set online. When a continuous-time control-affine
system is considered, such projection reduces to a convex
quadratic program (QP) which is referred to as CBF-QP.
Due to its simplicity, flexibility, and formal safety guarantees,
CBFs have been applied in safe learning control with many
successful applications [6], [7].

Compared with model predictive control (MPC) [8], which
needs to solve a nonconvex optimization problem in the face
of nonlinear dynamical systems, CBF-QP is computationally
efficient to solve online. However, unlike MPC, the QP-based
safety filter only operates in a minimally invasive manner, i.e.,
it generates the safe control input closest (in the Euclidean
norm) to the reference control input, unaware of the long-
term effects of its action. This indicates that the effects of the
safety filter on the performance of the closed-loop system are
hard to predict. Therefore, the application of the safety filter
may give rise to myopic controllers [9] that induce sub-par
performance in the long term.

To address the issue of myopic CBF-based safety filters,
in this letter we propose to utilize CBF to construct safe-by-
construction NN controllers that allow end-to-end learning.
Incorporating safety layers in the NN controller allows the
learning agent to take the effects of safety filters into account
during training in order to maximize long-term performance.
Inspired by [10], we design a differentiable safety layer using
the gauge map which establishes a bijection between the
polytopic output set of a NN (e.g., an �∞ norm ball) and
the safe control set characterized by CBFs. We denote the
proposed architecture as NN-gauge (Fig. 1(a)). We compare
NN-gauge with an alternative safe NN controller, NN-diff-QP,
which consists of a NN followed by a differentiable CBF-QP
layer (Fig. 1(b)). In the online execution, NN-gauge requires
closed-form evaluation or solving a linear program (LP) while
NN-diff-QP solves a quadratic program. Both methods are
significantly cheaper to run online than MPC.

A. Related Works

Safe controller design: The use of gauge map in safe learn-
ing control was proposed in [10], [11] which only consider
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Fig. 1. Safe-by-construction NN controllers that utilize CBFs to
construct differentiable safety layers (yellow blocks).

linear dynamics for which control invariant sets and an inte-
rior safe control policy are achievable. In this letter, by
proposing NN-gauge, we significantly extend the scope of
this framework to handle nonlinear dynamics with CBFs and
overcome the arising computational difficulties by applying an
implicit interior policy parameterization. The construction of
NN-diff-QP naturally follows from the use of differentiable
optimization layers [12], [13], [14]. NN-diff-QP is applied
in [15] and [16] for reinforcement learning tasks. In [17],
CBFs are applied as penalty functions to promote the safety
of NN controllers However, unlike NN-gauge or NN-diff-
QP, the resulting NN controllers do not have formal safety
guarantees.

Differential CBF: Introducing learning modules in the
parameterization of CBFs can improve the feasibility and
performance of the safety filter [18], [19] even in the face
of changing environments [20], [21]. These works focus on
learning or improving CBFs such that the safe control set is
enlarged and the safety filter can work better with a reference
controller. Instead, in this letter, we consider NN controller
synthesis with a given CBF.

The contributions of this letter are summarized below:
1) We propose a novel, differentiable, safe-by-construction

NN controller NN-gauge as shown in Fig. 1(a) using
CBFs. To the best of our knowledge, NN-gauge
is the only alternative to the projection-based safe
NN controller NN-diff-QP (Fig. 1(b)). Compared with
NN-diff-QP, NN-gauge enjoys more efficient training
and online evaluation.

2) We provide detailed case studies to evaluate the
performance-complexity trade-off of NN-gauge and
NN-diff-QP.

3) We demonstrate that learning safe-by-construction
NN controllers leads to better long-term closed-loop
performance than filtering a trained, possibly unsafe NN
controller.

In Section II, background on CBF is provided and the con-
trol problem is introduced. The construction of NN-gauge and

NN-diff-QP is shown in Section III, followed by numerical
examples in Section IV. Section V concludes this letter.

II. PRELIMINARY AND PROBLEM FORMULATION

A. System Model

In this letter we are interested in a continuous-time nonlinear
control-affine system:

ẋ = f (x) + g(x)u (1)

where f and g are locally Lipschitz, x ∈ D ⊆ R
n is the state,

D denotes a compact set in R
n, and u ∈ R

m is the control
input subject to bounded polytopic control constraints:

u ∈ U = {u ∈ R
m | Auu ≤ bu}. (2)

B. Control Barrier Functions

Safety can be framed in the context of enforcing set invari-
ance in the state space, i.e., the state cannot exit a safe set.
The safe set C is represented by the superlevel set of a contin-
uously differentiable function h(x). The algebraic expressions
of the safe set C, boundary of the safe set ∂C, and interior of
the safe set Int(C) are given by:

C = {x ∈ R
n : h(x) ≥ 0},

∂C = {x ∈ D ⊂ R
n : h(x) = 0},

Int(C) = {x ∈ D ⊂ R
n : h(x) > 0}. (3)

For a locally Lipschitz continuous control law u = k(x), we
have that ẋ = f (x) + g(x)k(x) is locally Lipschitz continuous.
Thus, for any initial condition x0 ∈ D, there exists a maximum
time interval of existence I(x0) = [0, τmax), such that x(t) is
the unique solution to the ordinary differential equation (1)
on I(x0). We frame the safety of system (1) in terms of set
invariance as shown below.

Definition 1 (Forward Invariance and Safety): The set C
is forward invariant if for every x0 ∈ C, x(t) ∈ C holds for
x(0) = x0 and all t ∈ I(x0). If C is forward invariant, we say
system (1) is safe.

To verify invariance of C under the control input con-
straints (2), a control barrier function is constructed as a
certificate which characterizes the admissible set of control
inputs that render C forward invariant.

Definition 2 (Extended Class K∞ Function): A continuous
function α: R → R is said to be an extended K∞ if it is
strictly increasing and α(0) = 0.

Definition 3 (Control Barrier Function): Let C ⊂ D ⊂ R
n

be the superlevel set of a continuously differentiable function
h : D → R, then h is a control barrier function if there exists
an extended class K∞ function α(·) such that for the control
system (1):

supu∈U[Lf h(x) + Lgh(x)u] ≥ −α(h(x)), (4)

for all x ∈ D where Lf h(x) and Lgh(x) denote the Lie
derivatives.

Given the CBF h(x), the set of all control values that render
C safe is given by:

Kcbf (x) = {u ∈ U : Lf h(x) + Lgh(x)u + α(h(x)) ≥ 0} (5)
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which we denote as the safe control set. The following theorem
shows that the existence of a control barrier function implies
that the control system (1) is safe:

Theorem 1 [4, Th. 2]: Assume h(x) is a CBF on D ⊃ C
and ∂h

∂x (x) �= 0 for all x ∈ ∂C. Then any Lipschitz continuous
controller u(x) such that u(x) ∈ Kcbf (x) for all x ∈ C will
render the set C forward invariant.

One important feature of Kcbf (x) is that it is a polytope1 for
all states. This enables the construction of a QP-based safety
filter that modifies any given reference controller k(x) in a
minimally invasive fashion [5] as follows:

u(x) = argmin
u

‖u − k(x)‖2
2

subject to Lf h(x) + Lgh(x)u + α(h(x)) ≥ 0,

u ∈ U. (6)

Although the safety filter (6) guarantees the forward invari-
ance of the safe set, it does not take into account the conse-
quences of the projection on future states and the performance
of the closed-loop system. This issue is inevitable when the
reference controller k(x) and the safety filter are designed
separately, and we propose to fix it by designing safe-by-
construction controllers that are amenable to any learning
or optimization framework. Particularly, in this letter, we
consider optimizing NN controllers using modern machine
learning solvers (such as stochastic gradient descent (SGD)
and Adam [22]) with known system dynamics.

C. Problem Formulation

Following the definition of safe control set (5), we define
the set of safe control policies as � := {π : Rn → R

m|π(x) ∈
Kcbf (x),∀x ∈ C}. Our task is to design a controller for
system (1) such that a performance objective is optimized and
the closed-loop system always stays inside the safe set C. In
other words, we consider finding a policy π(x) that solves the
following optimal control problem within a horizon T < τmax

2:

minimize
π∈�

Ex(0)∈C
[ 1

T

∫ T

0
c(x(t), u(t)) dt

]

subject to ẋ = f (x) + g(x)u,

u(t) = π(x(t)), (7)

where Ex(0)∈C is the expectation with respect to the initial
state, c(x(t), u(t)) is the cost associated with occupying state
x(t) and action u(t). The cost function c(x(t), u(t)) could be
of any form and is problem-specific, e.g., it can formulate the
penalty or barrier functions of constraints on the state x(t).

Despite the complex dynamics, cost functions, and safe pol-
icy constraints, problem (7) can still be effectively approached
by parameterizing an NN policy and applying SGD/Adam

1The polytopic safe control set Kcbf (x) is non-empty for all x ∈ C by
definition of CBF. In this letter, we assume a valid CBF for system (1) is
given and use it for NN controller design, although synthesizing CBFs can
be challenging itself and is an active area of research.

2The horizon T is a tuning parameter for NN controller design. While a
larger T is always preferred to improve the closed-loop performance of the
trained NN controller, it necessarily increases the computational complexity
of training.

which is empowered by automatic differentiation and mod-
ern machine learning solvers [23]. This procedure is simple
and has been shown effective to synthesize high-performance
NN controllers [24], [25]. Next, we study different parameteri-
zations of safe NN policies π ∈ � for solving (7) and evaluate
their performances. Notably, with safe NN policies, the effects
of the CBF-based safety layer are automatically considered.

III. SAFE CONTROLLER DESIGN

A natural way to construct a safe NN controller π(x) is to
restrict the output of the controller into the safe control set (5)
for all states. NN-diff-QP (Fig. 1(b)) achieves this by concate-
nating a differentiable projection layer which can be imple-
mented in a NN using toolboxes such as cvxpylayers [14]
and qpth [12]. In this section, we propose a different param-
eterization of a safe NN controller which achieves improved
online computational efficiency using gauge maps.

A. Gauge Map

Tabas and Zhang [10] observe that, while it is challenging to
directly restrict the output of a NN inside a general polytope,
adding a hyperbolic tangent activation layer easily constrains
the NN output into the unit �∞-norm ball B∞. This motivates
the application of the gauge map that establishes a bijection
between B∞ and a general polytope which in this letter we
consider as Kcbf (x). The notion of gauge map is facilitated by
the concept of C-set.

Definition 4 (C-Set [26]): A C-set is a convex and compact
set including the origin as an interior point.

The gauge function (or Minkowski function) of a vector
v ∈ R

m with respect to a C-set Q ⊂ R
m is given by

γQ(v) = inf{λ ≥ 0|v ∈ λQ}. (8)

When Q is a polytopic C-set defined by {w ∈ R
m|FT

i w ≤
gi, i = 1, 2, . . . , r}, the gauge function can be written in
closed-form as γQ(v) = maxi{FT

i v/gi}. For any v ∈ B∞, the
gauge map is defined as

G(v|Q) = ||v||∞
γQ(v)

· v, (9)

which constructs a bijection (see [10, Lemma 1]) between the
unit ball B∞ and the C-set Q. As shown in Fig. 2, all points
v ∈ B∞ are mapped “proportionally” to the same level set of
the polytope Q by the gauge map, while their projections onto
Q tend to concentrate on the boundary of Q.

B. Interior Safe Policy

To apply the gauge map as a safety layer that maps the
output of an NN to the safe control set Kcbf (x), we have to first
find an interior safe policy πint(x) such that πint(x) ∈ Int(C) for
all x ∈ C. This is necessary since Kcbf (x) may not be a C-set,
and we need to shift Kcbf (x) by πint(x) such that it is recentered
around the origin. When πint(x) is available, we have that the
shifted safe control set K̂cbf (x) := Kcbf (x) − πint(x) is a C-set
for which we can apply the gauge map.
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Fig. 2. Illustration of the gauge map from the �∞ ball B∞ to a polytopic
set Q.

An explicit construction of πint(x) is achievable for lin-
ear dynamical systems through multi-parametric program-
ming [11]. The recent work [27] proposes an algorithm to
extract an explicit or closed-form safe policy from CBFs
for system (1). Such an explicit interior policy is desir-
able since in this case the gauge map can be evaluated in
closed-form, making both the training and online evaluation
of NN-gauge computationally efficient. However, for general
nonlinear systems, the proposed algorithm in [27] can be com-
plex to apply in practice. To address this issue, we propose an
alternative method that implicitly constructs an interior safe
policy by choosing πint(x) as the Chebyshev center [28] of
Kcbf (x). Specifically, we have πint(x) = u∗ where u∗ is the
solution to the following LP:

maximize
u,R≥0

R

subject to −Lgh(x)u + R‖−Lgh(x)‖2

≤ Lf h(x) + α(h(x)),

a�
u,iu + R‖au,i‖2 ≤ bu,i, i = 1, . . . , du, (10)

where au,i denotes the i-th row of Au, bu,i denotes the i-th entry
of bu, and du represents the number of linear constraints defin-
ing U. The Chebyshev center formulation of πint(x) pushes
πint(x) away from the boundary of Kcbf (x). It also facilitates
training of the upstream NN, since it makes the target function
that the NN needs to learn smoother. By the validity of CBF,
the safe control set Kcbf (x) is a non-empty polytope for all
x ∈ C. By choosing πint(x) as the Chebyshev center from (10),
we readily have that πint(x) ∈ Int(Kcbf (x)) for R > 0 and the
shifted safe control set K̂cbf (x) is a C-set.

C. Control Policy Architecture

With an interior safe policy πint(x), we can now construct
a safe NN controller using the gauge map, as shown in the
following theorem.

Theorem 2: Let φθ : C → B∞ be a neural network param-
eterized by θ and πint(x) be an interior safe policy. Then, for
any system state x in the set C, the policy:

πθ (x) := G(φθ (x)|K̂cbf (x)) + πint(x) (11)

has the following properties:
1) πθ is safe.
2) The policy πθ (·) is trainable with respect to the NN

parameters θ .

Proof: 1) By the construction of the gauge map, we have
G(φθ (x)|K̂cbf (x)) ∈ K̂cbk(x) which is the safe control set
Kcbf (x) shifted by the interior safe control input πint(x).
Therefore, we have πθ (x) ∈ Kcbf (x) for all x ∈ C, and conclude
that πθ(x) is safe.

2) As shown in [10, Th. 1], automatic differentiation can be
applied to compute the subgradients of πθ with respect to θ ,
making it possible to train πθ .

The NN φθ can embed any architecture and learns the resid-
ual control policy added to the interior safe policy πint(x). By
the construction of the gauge map, the applied controller πθ(x)
shown in (11) belongs to the safe control set Kcbf (x), and the
performance of πθ (x) is no worse than πint(x) after training.
The online evaluation of πθ can be done in closed-form if an
explicit interior safe policy πint(x) is given, or by solving an
LP if the implicit construction (10) is used.

Remark 1: Our analysis of safe NN controllers can be read-
ily applied to incorporate high order CBFs [29] in which case
the safe control set Kcbf (x) is still a polytope. In addition to
the CBF-based safe control sets, NN-gauge and NN-diff-QP
can easily encode other forms of polytopic safe control sets
such as u ∈ {u | Gu ≤ b} and u ∈ {u | Fx + Gu ≤ b}.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the application of safe
NN controllers in adaptive cruise control (ACC) and air-
craft collision avoidance. The following control methods are
considered:

1) MPC: Model predictive control could guarantee the
safety of the closed-loop system with good performance,
but it is computationally costly to run online when the
horizon is large or the dynamics is nonlinear.

2) NN: A feedforward NN controller is trained to opti-
mizes (7) with regularizers penalizing violations of
safety constraints. No safety filter is applied in the online
evaluation of this NN controller. This method enjoys fast
online evaluation but suffers the risk of safety violations.

3) NN-QP: The above NN controller is equipped with the
CBF-QP safety filter during online evaluation.

4) NN-diff-QP and NN-gauge: The safe-by-construction
NN controllers introduced in Section III that are trained
directly to optimize the control performance (7). We also
include the interior policy πint given by (10) as a special
case of NN-gauge for comparison.

For NN-diff-QP, we use cvxpylayers [14] to construct the
differentiable QP layer. For NN-gauge, the implicit interior
policy (10) is applied. All training is performed using PyTorch
on Google Colab with Adam [22] as the optimizer.

A. Adaptive Cruise Control

Adaptive cruise control is a common example to validate
safe control strategies [4], [30]. The control goal of ACC is
to let the ego car achieve the desired cruising speed while
maintaining a safe distance from the leading car. We consider
the scenario where the ego car tries to follow the leading car
on a straight road. The dynamics of the problem is given by
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(model adapted from [30]):

ẋ(t) =
⎡
⎣

0 1 0
0 −0.1 0
0 −1 0

⎤
⎦ x(t) +

⎡
⎣

0
2.5
0

⎤
⎦u(t), (12)

where x = [
x1 x2 x3

]� = [
pf vf d

]�, pf is the position, vf

is the velocity of the ego car, d is the distance between the ego
and leading cars, and u ∈ [−1, 1] is the control input denoting
the acceleration. To prevent collision between the two cars, the
CBF is chosen as h(x) = x3 −1.8x2 and the trajectory cost for
the ego car is given by

Cost =
∫ T

0
(0.01(x2(t) − v∗

f )
2 + 0.05u(t)2)dt (13)

with a desired speed v∗
f = 30m/s. The leading car travels at

a constant speed of 16m/s, so we expect the ego car’s speed
to converge to 16m/s at the steady state since a speed greater
than 16m/s will lead to a violation of safe distance.

All NN controllers, namely NN, NN-gauge and NN-diff-QP,
are trained to optimize (7) with horizon T = 1s by Adam with
randomly sampled initial states. The system dynamics (12) is
discretized with sampling rate �t = 0.1s during training. The
trainable NN modules φθ in NN, NN-gauge, and NN-diff-QP
have the same architecture.

We test all NN controllers on 5 randomly sampled initial
states over a horizon T = 20s in order to evaluate their long-
term performance. The results are reported in Table I. For
one of the testing initial condition x(0) = [

0 30 100
]�, we

plot the values of the CBF function and the velocity along the
trajectory of the ego car in Fig. 3(b) and Fig. 3(a), respectively.

We observe that both NN-gauge and NN-diff-QP achieve
similar closed-loop performance, comparable to MPC.3 While
NN achieves reasonable performance, it violates safety con-
straints (Fig. 3(a)). Directly applying the CBF-QP safety filter
on it enforces safe control, but deteriorates the long-term
closed-loop performance of the NN controller as shown in
Fig. 3(b) where the optimal behavior of the ego car is sup-
posed to have a steady-state velocity of 16m/s. NN-gauge has
an edge over NN-diff-QP in training and online evaluation time
due to its use of LP-based safety layers. We also observe a
large performance improvement of NN-gauge compared with
πint which means training the NN module in NN-Gauge can
greatly improve the performance of the policy.

B. Aircraft Collision Avoidance

We apply our framework to the aircraft collision avoidance
problem which is adapted from [31]. Specifically, we consider
a dynamical system with states x = [

x�
a x�

b

]�
, where xa =[

pa,x pa,y θa
]� ∈ R

3 is the state of aircraft a with pa,x and
pa,y denoting the position and θa denoting the orientation. The
state xb of aircraft b is defined similarly. The control inputs are
u = [

va wa vb wb
]� ∈ R

4 where va and wa are speed and
turning rate of aircraft a, respectively, and vb, wb are defined

3While MPC solves a finite horizon optimal control problem to optimality,
its closed-loop performance is not guaranteed to be optimal. In Table I, NN-
diff-QP achieved better performance than MPC in the long term.

TABLE I
CLOSED-LOOP PERFORMANCE COMPARISON OF CONTROLLERS IN

THE ADAPTIVE CRUISE CONTROL EXAMPLE. AVERAGE VALUES FROM
5 RANDOMLY SAMPLED INITIAL STATES ARE REPORTED

Fig. 3. CBF values (left) and velocity of the ego car (right) under dif-
ferent controllers are evaluated in closed-loop for 20s. A CBF value
below zero indicates unsafety, and the optimal behavior of the ego
car is expected to have a steady state velocity of 16m/s same as the
leading car.

Fig. 4. Trajectories of the aircraft a and b under different controllers.
The induced costs of each trajectory are labeled accordingly.

similarly. The dynamics of the aircraft a (and similarly for
aircraft b) is given by:

ẋa(t) =
⎡
⎣

va(t)cos(θa(t))
va(t)sin(θa(t))

wa(t)

⎤
⎦. (14)

As shown in Fig. 4, our goal is to drive aircraft a to the
left and aircraft b to the right while maintaining a minimum
safe distance of 0.5 between them. Aircrafts a and b try to stay
close to pa,x = −5 and pb,x = 5, respectively. A quadratic cost
function is defined accordingly over a horizon T , and we adopt
the constructive CBF developed in [31] to encode the safe set
in the state space which also considers the input constraint
(va, wa, vb, wb) ∈ [0.1, 1]× [−1, 1]× [0.1, 1]× [−1, 1]. Note
that the minimum admissible velocity of aircraft a and b is
0.1, so they cannot stop exactly at pa,x = −5 or pb,x = 5.

All NN controllers are trained similarly as in the ACC
example with sampling rate �t = 0.1s and horizon T = 2s,
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TABLE II
CLOSED-LOOP PERFORMANCE COMPARISON OF CONTROLLERS IN

THE AIRCRAFT COLLISION AVOIDANCE EXAMPLE. AVERAGE VALUES
FROM 5 RANDOMLY SAMPLED INITIAL STATES ARE REPORTED

and are tested on 5 randomly sampled initial states with hori-
zon T = 20s. The results are shown in Table II. One set of
closed-loop system trajectories starting from the initial state
x(0) = [

0.5 0 π − 0.5 0 0
]� under different controllers

are plotted in Fig. 4 together with the induced costs. With this
initial condition, aircrafts a and b start close to each other with
orientations leading to a head-on collision.

From Table II and Fig. 4, we observe that NN achieves the
best performance but is unsafe. Adding the CBF-QP as a safety
filter (i.e., NN-QP) drastically deteriorates the performance of
the NN controller. Among the NN controllers with safety guar-
antee, NN-diff-QP performs the best and NN-gauge achieves a
similar level of performance. The MPC controller has the best
performance with safety guarantee, but it has a significantly
higher online solve time.

V. CONCLUSION

In this letter, we showed that CBF-based safety filters can
degrade closed-loop performance if their long-term effects
are not considered during learning. To address this issue, we
proposed a novel safe-by-construction NN controller which
utilizes CBF and gauge map to construct a differentiable safety
layer. The proposed gauge map-based NN controller achieves
comparable performances as the projection-based NN con-
troller while being computationally more efficient to train and
evaluate online. Both the gauge map-based and projection-
based safe NN controllers demonstrate improved performance
compared with filtered NN controllers in numerical examples.
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